Last modified: 11 Jul 2025 14:46
The course develops incompressible and compressible flow topics of broad interest to mechanical engineers. It demonstrates the link between well-developed theoretical studies and their practical application in offshore technology, aeronautics, engine design and fluid machinery. The course begins with water wave theory with particular application to coastal and offshore engineering. This is followed by consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. These topics are also part of the EA40JF Civil Engineering Hydraulics course. The second part of the course concentrates on compressible flow. Using the fundamental conservation equations, the characteristics of converging-diverging nozzles and accelerating supersonic flows are examined. Plane and oblique shock waves, Prandt-Meyer flow and Navier-Stokes equations are then introduced. The course concludes with a discussion of the behaviour of transonic aerofoils, and the design of supersonic engine inlets.
Study Type | Undergraduate | Level | 4 |
---|---|---|---|
Term | First Term | Credit Points | 15 credits (7.5 ECTS credits) |
Campus | Aberdeen | Sustained Study | No |
Co-ordinators |
|
The course begins with water wave theory, wave energy and wave forces on structures. This is followed by consideration of boundary layer mechanics, including boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and the determination of drag forces on immersed bodies. The second part of the course concentrates on compressible flow. Using the fundamental conservation equations, the characteristics of converging-diverging nozzles and accelerating supersonic flows are examined. Plane and oblique shock waves, Prandtl-Meyer flow and Navier-Stokes equations are then introduced. The course concludes with a discussion of the behaviour of transonic aerofoils, and the design of supersonic engine inlets.
Information on contact teaching time is available from the course guide.
Assessment Type | Summative | Weighting | 85 | |
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
Assessment Type | Summative | Weighting | 15 | |
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
The continuous assessment will comprise three timed online class tests covering the first three topics of the course. (1 hour each) The tests will take place in weeks 11, 14 and 17. |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
There are no assessments for this course.
Assessment Type | Summative | Weighting | ||
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Students who fail the assessment overall (mark below CGS 9) will need to take the resit examination, which will count for 85%; the continuous assessment marks are carried forward to the resit. Resit grades are capped at CGS 9. |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
Factual | Remember | ILO’s for this course are available in the course guide. |
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.