
Automatic Evaluation of Referring Expression Generation Using Corpora∗

Surabhi Gupta and Amanda J. Stent
Computer Science Department

Stony Brook University
Stony Brook, NY 11794-4400 USA

sugupta@ic.sunysb.edu, stent@cs.sunysb.edu

Abstract

We report on a set of experiments using corpora to
evaluate referring expression generation for spo-
ken dialog. In dialog, participants frequently con-
verge on the same referring expressions even if
those referring expressions are inefficient. Exist-
ing rule-based algorithms for referring expression
generation do not adequately model this adapta-
tion. We extended two such algorithms with sim-
ple models of partner adaptation. We evaluated
these algorithms automatically using corpora of
spoken dialog.

Referring expression generation is an important issue be-
cause referring expressions are prevalent in all types of dis-
course, and mproper construction of a referring expression
can result in referring expressions that are ambiguous (e.g.
the bookwhen there are two books) or that lead to false im-
plicatures (e.g.the bright red bookwhen there is only one
book)[Grice, 1975]. The generation of referring expressions
is uniquely dependent on pragmatic constraints[Jordan and
Walker, 2005; Krahmer and Theune, 2000]. In particular, in
dialog participants adapt to each other’s choice of referring
expressions[Brennan, 1996; Metzing and Brennan, 2003].
However, most existing algorithms for referring expression
generation do not take into account partner-specific adapta-
tion (c.f. [Jordan and Walker, 2005]).

In this paper, we report on a set of experiments using cor-
pora to automatically evaluate algorithms for referring ex-
pression generation for dialog. We used the MapTask and
Coconut corpora, which are described in Section 2. The al-
gorithms we use are described in Section 3. We describe our
evaluation in Section 4 and conclude with some ideas for fu-
ture work in Section 5.

∗We would like to thank the blind reviewers for their helpful
comments. This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Division,
under Contract No. NBCHD030010; and by the National Science
Foundation under Grant No. 0325188.

1 Related Work
Referring expression generation is one of the most widely
studied research problems in natural language generation.
Dale and Reiter’s Incremental Algorithm[Dale and Reiter,
1995] is the most widely used. There have been several ex-
tensions to the basic Incremental Algorithm, including exten-
sions to increase the efficiency of the referring expressions
generated[Gardent and others, 2003; Horacek, 2003] and
to refine the contrast set based on consideration of the dis-
course context[Krahmer and Theune, 2000]. Other work
on referring expression generation has expanded the types
of expressions that can be generated, but usually at the cost
of efficiency in generation (e.g.[Gardent and others, 2003;
van Deemter, 2000; 2002; Varges and van Deemter, 2005]).
For these approaches, no quantitative evaluation is reported.

Siddharthan and Copestake addressed the problem of
open-domain noun phrase generation[Siddharthan and
Copestake, 2004]. They evaluated their algorithm by com-
puting how many generated noun phrases were identical to
corresponding human-produced noun phrases from the Wall
Street Journal, and reported a performance of 81.5%.

Other work has looked at statistical noun phrase generation
from corpora Poesio et al. performed several experiments on
learning to predict aspects of the realization of a noun phrase.
They compared the answer provided by their learned models
to annotated testing data. They report an accuracy of 70% for
predicting noun phrase type (e.g. personal pronoun, bare NP),
and of 67.5% for predicting the syntactic form of an attribute
realization given semantic and pragmatic information[Cheng
et al., 2001; Poesio and others, 1999]. Shaw and Hatzivas-
siloglu [Shaw and Hatzivassiloglou, 1999] and Malouf[Mal-
ouf, 2000] trained several models for prediction of prenomi-
nal adjective ordering; performance varies, with best perfor-
mance by corpus ranging from 71.04% on financial data to
94.9% on medical data. Roy used humans to evaluate output
from his shape description generator in a forced-choice ex-
periment and reported a performance of 81.3%[Roy, 2002].

Jordan and Walker trained a classifier on an annotated ver-
sion of the Coconut corpus to select sets of attributes for in-
clusion in generated noun phrases based on pragmatic fea-
tures and information from a knowledge base[Jordan and
Walker, 2005]. Their goal was to examine which of three
models of noun phrase generation (include Dale and Reiter’s
model) works best. Their best reported classification accu-

racy (combining all models) is 59.9%. They do not perform
attribute ordering.

2 Data
For our comparison of approaches to referring expression
generation we used two dialog corpora, the MapTask cor-
pus[Anderson and others, 1991] and the Coconut corpus[Di
Eugenio and others, 1998]. Table 1 shows a breakdown of
referring expressions in our dialogs by type. We only used
non-embedded definite and indefinite noun phrases in our ex-
periments. Furthermore, we only used noun phrases that refer
to some object represented in the world of the task. For exam-
ple, for MapTask references to the paper on which the map is
printed such asthe left hand sideare excluded from this study.

2.1 Corpora
Maptask In each MapTask dialog[Anderson and others,
1991], there is a giver and a follower. Each participant has a
map with landmarks indicated; there are differences in the po-
sition and number of landmarks on the two maps. The giver’s
map has a route between the landmarks; the giver provides
instructions to the follower so that the follower is able to re-
produce the route on the giver’s map.

Due to the labor involved in annotating the dialogs, we ran-
domly selected 30 dialogs from the MapTask corpus to use for
these experiments. We used 16 dialogs where the participants
had eye contact and 14 where they did not.
Coconut In each Coconut dialog[Di Eugenio and others,
1998], each partner is given a partial inventory of furniture.
Their goal is to buy as much furniture as possible for two
rooms of the house, the living room and the dining room.
They have to try and match colors of furniture within a
room. The participants are given information about calculat-
ing points for the furniture that they have bought (e.g. a sofa
is worth 200 points, dining table chairs are worth 50 points
each). The dialog partners sat in different rooms and commu-
nicated with each other via text messaging.

What makes this corpus interesting is that there are multi-
ple items of furniture with the sametype attribute, which
means more scope for modifier selection. We used all 16
unique dialogs in the Coconut corpus.

2.2 Dialog processing
For each selected dialog, we constructed an annotation file,
lexicon and set of knowledge representations.
Annotation Files We processed each dialog by: extract-
ing a plain-text transcript; part-of-speech tagging it using the
Brill tagger [Brill, 1992], and automatically extracting noun
phrases using a pattern matcher over the part-of-speech tag
sequences. We then corrected the noun phrase extraction by
hand, and annotated each extracted noun phrase for referent
(in the knowledge representation), type (noun phrase or pro-
noun), and to indicate whether the noun phrase was embed-
ded in another noun phrase. The result was a file containing
all referring expressions for the dialog in order.
Knowledge RepresentationsWe constructed a knowledge
representation for each speaker in each dialog by hand from
examination of the materials provided to the speakers (maps,

furniture inventories). The knowledge representations for
MapTask included values for six attributes for each poten-
tial referent: contents (e.g.sandstonein sandstone cliff), size
(e.g. large), state (e.g.parched, disused), location, color and
type (e.g.cliffs). For Coconut, the knowledge representations
included values for five attributes for each potential referent:
quantity (e.g.2 in 2 chairs), cost (e.g.300in the$300 chair),
state (e.g.high in high table), color and type (e.g.chair).
Lexicons We also constructed a lexicon by hand for each di-
alog. The lexicon contained a list of words that might appear
in a noun phrase in that dialog. We labeled each word with its
word sense number from WordNet, the category of the word
in our knowledge representation (e.g. size, state, location)
and the singular form of the word.

2.3 Choice of corpus
The choice of corpus is particularly important for evaluation
of referring expression generation. First, the corpus should
be rich in the referring expressions of interest. For example,
Siddharthan and Copestake found only 146 definite descrip-
tions in the Wall Street Journal that could be used in their
evaluation[Siddharthan and Copestake, 2004]. Between our
two corpora, there were significant differences in terms of NP
type and number and location of modifiers, as shown in Table
1. In fact, we sacrificed a focus on spoken dialog in order to
obtain richer noun phrases.

Second, it is important to be clear about which noun
phrases are being studied and what proportion of the number
of noun phrases in the corpus they represent, so that perfor-
mance improvements for competing algorithms can be eval-
uated in terms of global impact. We used a modified version
of the disclosure table described in[Byron, 2001].

Both of our corpora involve fairly straightforward referen-
tial tasks. By contrast, in corpora of descriptions collected by
psycholinguists (e.g.[Brennan, 1996; Metzing and Brennan,
2003], the conversational partners make considerable use of
their general world knowledge to assign new labels to objects.
These data cannot be modeled by any existing algorithm for
generating referring expressions.

3 Implementation
3.1 Algorithms
We implemented Dale and Reiter’s Incremental Algorithm
[Dale and Reiter, 1995], and Siddharthan and Copestake’s
recent extension to this algorithm[Siddharthan and Copes-
take, 2004]. We then implemented two approaches to mod-
eling partner effects and three approaches to pre/postmodifier
placement as extensions to each algorithm. We compare the
performance of all of these algorithms to each other and to a
simple baseline.

We performed our experiments using a program that works
through the annotation file for each dialog, passing the refer-
ent in each line to the selected algorithm and comparing the
output to the human-produced referring expression. Each al-
gorithm takes as input a referent for which to generate a refer-
ring expression, a preference list of attributes to use in gener-
ating the referring expression and a contrast set of distractors
for the referent constructed from the discourse context and

NP category MapTask Coconut
Total Count

Def 2118 116
Indef 1411 967
1st person pro. 563 440
2nd person pro. 1275 165
3rd person pro. 614 79

Total NPs 5981 1767
Excluded

Quantity Nouns 160 291
Pron (first+second+third) 2452 684
NPs not in KR, Other 2075 321

Included
No Modifiers 113 13
Simple NPs 1268 229
Complex NPs 26 242

NPs used 1294 471
Mean # attributes 2.02 3.07

Table 1: Comparison of Noun phrases in corpora used

from the knowledge representation for the current speaker.
The algorithms all output an ordered list of attribute values
that approximate the final referring expression.

The referent is taken from the annotation file for each dia-
log. The preference list is an ordered list of the attributes in
the knowledge representation for that dialog. The ordering of
the preference list varies by algorithm.

We look up each referent in our model of discourse con-
text. If it is there, then the initial contrast set is the en-
tities in the discourse context. If it is not, then the initial
contrast set is the entities in the discourse context plus the
entities in the current speaker’s knowledge representation.
After generating a referring expression, we add its referent
to the discourse context. This presumes that each referring
expression is perfectly understood and ignores the impor-
tant role played by grounding in conversation[Clark, 1996;
Cahn and Brennan, 1999]. However, in this research we did
not attempt to interpret all utterances in the discourse, so this
is a necessary approximation.
Baseline The initial referring expression consists solely of
the value of thetype attribute. The remaining attributes are
selected at random from those attributes for which the ref-
erent has a value, until all distractors from the contrast set
have been eliminated. The value of each selected attribute
is prepended to the referring expression. This algorithm is
equivalent to the Dale and Reiter algorithm with no ordered
preference list.
Dale and Reiter Dale and Reiter’s Incremental Algorithm
[DR] was designed to model cognitive efficiency constraints
that affect how humans produce referring expressions. The
key difference from the baseline algorithm is that a prefer-
ence list (an ordered list of attributes prespecified by the sys-
tem designer) is used to select the next attribute for inclu-
sion in the referring expression. As in the baseline algorithm,
the value for each selected attribute is prepended to the re-
ferring expression. For the MapTask corpus, we used the
following preference list: <type, size, content,
state, location, color >. For the Coconut corpus,

we used this preference list:<type, color, cost,
quantity, state >.
Siddharthan and Copestake Siddharthan and Copestake’s
extension to the Incremental Algorithm [SC] was designed to
permit it to be used for domains for which there do not ex-
ist detailed ontologies, especially open domain noun phrase
generation. The basic algorithm is identical, except for the
ordering of the preference list. For each referring expression,
the attributes in the preference list are reordered so as to pre-
fer maximally distinctive adjectives (attribute values).
Partner-Specific Adaptation In order to model partner ef-
fects, we simply consider previous mentions of the current
referent. In our basic approach [DRP, SCP], we reorder the
preference list for each referent to reflect the ordering of at-
tributes in the most recent mention of that referent (by either
speaker), with unmentioned attributes coming at the end of
the preference list.
Partner-Specific Adaptation Variant In a variant of our ba-
sic approach to modeling partner effects [DRPV, SCPV], we
not only reorder the preference list to reflect those attributes
used in the most recent mention of the current referent, but
alsorequirethat attributes used in the most recent mention be
used in the referring expression to be generated, even if those
attributes do not eliminate any distractors.

3.2 Generating Postmodifiers

The Incremental Algorithm only selects and orders attributes
that will be used to generate noun phrase premodifiers. As
Table 1 shows, noun phrases containing postmodifiers ac-
counted for approximately 51% of the indefinite and defi-
nite noun phrases in the Coconut corpus. We implemented
three extensions to this algorithm that permit the generation
of complex noun phrases including postmodifiers as well as
premodifiers. These extensions were all evaluated in combi-
nation with each of the six algorithms described in the pre-
vious section. For each dialog in each corpus, we used the
other dialogs in that corpus to compute probabilities for these
models.

Random In this approach, the decision about whether to
place the attribute value before or after the head noun is made
at random. The ordering of premodifiers is still right to left as
specified in the preference list; the ordering of postmodifiers
is left to right as specified in the preference list.
Unigram In this approach, the decision about whether to
place the attribute value before or after the head noun is made
by considering the relative frequency of placement of this at-
tribute in the corpus under consideration. For example, for
each of the sixteen dialogs in the Coconut corpus, we com-
pute the relative frequencies of occurrence of each attribute
before and after the head nouns in in the noun phrases of the
other fifteen dialogs. During generation, we decide whether
to construct a premodifier or postmodifier from a particular
attribute value based on whether the relative frequency of oc-
currence of the attribute in premodifiers was greater than or
less than the relative frequency of occurrence of the attribute
in postmodifiers. The ordering of premodifiers is still right to
left as specified in the preference list; the ordering of post-
modifiers is left to right as specified in the preference list.
Bigram This approach also relies on knowing the rela-
tive frequencies of occurrence of the attributes in the cor-
pus. However, in this case we compute relative frequencies
in context: for each attribute, we compute the probability of
occurrence of that attribute given each other attribute. Dur-
ing generation, we look up the relative frequencies of the
current attribute occurring before and after each attribute al-
ready in the referring expression, and place the attribute value
at the location of highest relative frequency. Note that this
means that modifiers are not necessarily ordered as specified
in the preference list; the preference list determines which
modifiers are used, but the corpus frequencies determine
where they are placed (cf.[Shaw and Hatzivassiloglou, 1999;
Malouf, 2000]).

4 Experiments
In these experiments, we were interested in approaches to
modeling partner-specific adaptation, so could not evaluate
solely for comprehensibility (cf.[Roy, 2002]). Our algo-
rithms perform attribute selection and ordering, so we could
not use classification accuracy as in[Jordan and Walker,
2005]. At the same time, we were not performing surface
realization, so could not use string equality (cf.[Siddharthan
and Copestake, 2004]).

Our assumption was that humans are the best generators
of referring expressions in conversation. The performance
of a program modeling partner-specific adaptation can there-
fore be automatically evaluated by comparison with human-
produced output. Of course, this assumption sometimes fails.
For example, a human-produced referring expression may not
be understood by the conversational partner; or it may be non-
optimal (too long, or using attribute values that are not clear
to the conversational partner). However, it is not feasible to
interrupt a dialog at every referring expression to query the
hearer as to whether it is “optimal”.

Another issue is that two referring expressions may be
equally good in context; our evaluation method does not take
this into account. However, it evaluates the phenomena we

are interested in (attribute selection, attribute ordering and
partner-specific adaptation) and can be performed automati-
cally, even without the use of an end-to-end dialog system. It
is therefore a reasonable compromise for efficient evaluation
and comparison for this task.

To evaluate our algorithms, the output referring expression
(consisting of a sequence of attribute values, possibly includ-
ing a determiner and almost always includingtype) is com-
pared to the human-produced referring expression from the
annotation file1. We automatically compute:

• (C) the number of attribute values that are correct

• (I) the number of attributes that are inserted

• (D) the number of attributes that are deleted

• (M) the number of attributes that are moved

Because we used domain-specific lexicons, we never had an
incorrect value for an attribute. Our score for each generated
referring expression is S = C / C + I + D + M; this score
ranges from 0 to 1, with higher numbers indicating referring
expressions that better match the original human-produced
ones. For evaluating our algorithms, we computed the mean
score over all noun phrases for each corpus.

4.1 Hypotheses
We compared the six algorithms described earlier, and our
baseline algorithm, in combination with our three extensions
for pre/postmodifier placement. Tables 2 and 3 show the
mean scores and number of items scoring 1 for each algo-
rithm for each corpus. We used paired t-tests to compare the
performance of our algorithms. Our hypotheses were as fol-
lows:

1. DR and SC will outperform baseline

2. SC will outpeform DR

3. DRP and DRPV will outperform DR

4. SCP and SCPV will outperform SC

5. For each version of the Incremental Algorithm, Bigram
will outperform Unigram which will outperform Ran-
dom

There were differences in our two corpora that led to
slightly different results for each one. In particular:

• For MapTask our knowledge representations were in-
complete (we did not have attribute values for all at-
tributes for all referents)

• For Coconut there were more distractors on average

• For each MapTask dialog, the two participants’ knowl-
edge representations had conflicts; for Coconut, they
were complementary

MapTask
Our basic results for MapTask, based on mean scores, are:

1. DR and SC perform significantlyworse than baseline
for except for Random (p< 0.01).

1A small number were excluded at this stage because the original
NP was incomplete: 20 for Maptask and 7 for Coconut.

Mean None Random Unigram Bigram
Baseline 0.636 (223) 0.622 (220) 0.636 (223) 0.636 (223)
DR 0.633 (216) 0.625 (216) 0.633 (216) 0.633 (216)
DRP 0.638 (232) 0.621 (222) 0.638 (234) 0.638 (234)
DRPV 0.764 (639) 0.657 (409) 0.760 (630) 0.764 (638)
SC 0.631 (232) 0.618 (223) 0.630 (232) 0.630 (232)
SCP 0.631 (232) 0.618 (225) 0.630 (232) 0.630 (232)
SCPV 0.760 (636) 0.664 (436) 0.755 (627) 0.762 (635)

Table 2: Mean scores and number perfect for MapTask

2. SC doesnot outperform DR. Both the algorithms give
similar results except for Random, where SC performs
significantlyworsethan DR (p< 0.01).

3. DRP performs significantly better than DR except for
Random (p< 0.01). DRPV performs significantly bet-
ter than DR for all postmodifier variants (p< 0.01).

4. SCP doesnot perform better than SC. However, SCPV
does perform significantly better than SC for all post-
modifier variants (p< 0.01).

5. Both Bigram and Unigram outperform Random (p<
0.01). Bigram outperforms Unigram for DRPV and
SCPV. (p< 0.01).

DR does not perform significantly better than baseline be-
cause after selecting thetype attribute, there are no re-
maining distractors for most of the referents in this corpus.
However, the algorithms that model partner effects typically
do outperform those that do not because most of the noun
phrases do include at least one attribute other than type; in
other words, the human-produced noun phrases are verbose.

Coconut
Our basic results for Coconut are:

1. DR and SC do perform significantly better than baseline
for all postmodifier variants (p< 0.01).

2. SC performs significantly better than DR for all post-
modifier variants (p< 0.05).

3. DRP and DRPV both perform significantly better than
DR for all postmodifier variants (p< 0.01).

4. SCP doesnotperform better than SC except for Random
(p < 0.05). SCPV performs significantly better than SC
for all postmodifier variants (p< 0.01).

5. There is no significant difference between Random and
Unigram. Bigram performs better than Random for SC,
SCP and SCPV (p< 0.05). Bigram performs signif-
icantly better than Unigram for SC, DRP, SCP, SCPV
and DRPV (p< 0.05).

Because there are more distractors on average for a referent
in the Coconut corpus, it is less likely that simply selecting
the type attribute will remove all the distractors. So, for this
corpus, DR and SC perform better than baseline. Because
there are more attributes per referent, there are more ways to
incorrectly place an attribute value in the NP, which explains
why Random and Unigram are more similar for this corpus.

For both corpora, SCP does not perform significantly bet-
ter than SC, but SCPV does. We think that with SCP, the

reordering of attributes leads to “over-efficient” NP genera-
tion compared to SCPV. This does not happen with DRP, for
which the preference list is not re-ordered on a per-referent
basis.

Discussion
Prior work in cognitive psychology has shown that humans
frequently produce “non-optimal” referring expressions, and
has highlighted the need to model partner effects in inter-
preting and producing referring expressions[Brennan, 1996;
Metzing and Brennan, 2003]. The results reported here pro-
vide confirmation that our relatively simple extensions to
the Incremental Algorithm can provide effective modeling of
partner effects in referring expression generation, compared
to state-of-the-art statistical approaches[Jordan and Walker,
2005]. These results also show that our extension to the In-
cremental Algorithm to permit generation of NP postmodi-
fiers does in fact improve the algorithm’s performance across
both corpora.

Finally, these results show that it is important to consider
the domain when selecting an algorithm for referring expres-
sion generation. When there is only one object of a partic-
ular type, our baseline algorithm performs remarkably well.
While there are some important domains with multiple dis-
tractors for each possible referent (e.g. air travel, rail travel,
purchasing domains in general), there are many that do not
have this characteristic (e.g. customer service, tutoring, some
planning domains).

There are some types of referring expression that our al-
gorithms could not handle. First, sometimes a conversational
partner seems to have invented information about an object.
For example, in the MapTask corpus on some maps there is
a location called “highest viewpoint”, which is drawn on the
map with birds flying around it. These birds were referred
to as seagulls. Second, we do not generate descriptions of
sets (cf. [van Deemter, 2002]). In the Coconut corpus in
particular there were many complex set descriptions such as
2 green and 2 red chairs both for$100 each. Third, we do
not generate pronominal references. Adding the capability
to generate third-person pronouns would require only simple
modifications to our existing algorithms to track discourse fo-
cus. We know of no generation algorithm that generates first
and second person pronouns; pronouns such aswe and they
are references to sets and so are particularly problematic.

5 Conclusions and Future Work
In this paper we analyze different approaches to generating
referring expressions for spoken dialog. We show that with

Mean None Random Unigram Bigram
Baseline 0.611 (72) 0.609 (72) 0.610 (72) 0.610 (72)
DR 0.637 (74) 0.638 (74) 0.637 (74) 0.637 (74)
DRP 0.674 (112) 0.684 (115) 0.683 (115) 0.685 (115)
DRPV 0.760 (165) 0.763 (165) 0.761 (165) 0.764 (165)
SC 0.657 (114) 0.655 (114) 0.656 (114) 0.659 (114)
SCP 0.660 (121) 0.661 (121) 0.660 (121) 0.663 (121)
SCPV 0.753 (163) 0.754 (163) 0.754 (163) 0.757 (163)

Table 3: Mean scores and number perfect for Coconut

relatively simple approaches to modeling partner-specific
adaptation, it is possible to improve the performance of algo-
rithms for referring expression generation. These algorithms
can also be improved by simple extensions that permit the
generation of noun phrases involving postmodifiers.

We plan to integrate our implemented algorithms into a
spoken dialog system for collaborative problem solving being
developed partly at Stony Brook University. This will give us
an opportunity to evaluate the performance of our algorithm
in-use, as opposed to off-line.

References
[Anderson and others, 1991] A. Anderson et al. The HCRC

Map Task corpus.Language and Speech, 34, 1991.
[Brennan, 1996] S. E. Brennan. Lexical entrainment in spon-

taneous dialog. InProceedings of ISSD 1996, 1996.
[Brill, 1992] E. Brill. A simple rule-based part of speech tag-

ger. InProceedings of ANLP 1992, 1992.
[Byron, 2001] D. Byron. The uncommon denominator.

Computational Linguistics, 27(4), December 2001.
[Cahn and Brennan, 1999] J. Cahn and S. E. Brennan. A

psychological model of grounding and repair in dialog. In
Proceedings of the AAAI Fall Symposium on Psycholog-
ical Models of Communication in Collaborative Systems,
1999.

[Chenget al., 2001] H. Cheng, M. Poesio, R. Henschel, and
C. Mellish. Corpus-based NP modifier generation. InPro-
ceedings of NAACL 2001, 2001.

[Clark, 1996] H. Clark. Using Language. Cambridge Uni-
versity Press, 1996.

[Dale and Reiter, 1995] R. Dale and E. Reiter. Computa-
tional interpretations of the Gricean maxims in the gen-
eration of referring expressions.Cognitive Science, 19(2),
1995.

[Di Eugenio and others, 1998] B. Di Eugenio et al. An
empirical investigation of proposals in collaborative dia-
logues. InProceedings of COLING-ACL 1998, 1998.

[Gardent and others, 2003] C. Gardent et al. Generating defi-
nite descriptions: Non-incrementality, inference, and data.
In T. Pechman and C. Habel, editors,Multidisciplinary
approaches to language production. Walter de Gruyter,
Berlin, 2003.

[Grice, 1975] H. P. Grice. Logic and conversation. InSyntax
and Semantics: Vol 3, Speech Acts. Academic Press., New
York, 1975.

[Horacek, 2003] H. Horacek. A best-first search algorithm
for generating referring expressions. InProceedings of
ACL 2003, 2003.

[Jordan and Walker, 2005] P. Jordan and M. Walker. Learn-
ing content selection rules for generating object descrip-
tions in dialogue. Journal of Artificial Intelligence Re-
search, 4, 2005.

[Krahmer and Theune, 2000] E. Krahmer and M. Theune.
Efficient context-sensitive generation of referring expres-
sions. In K. van Deemter and R. Kibble, editors,Informa-
tion Sharing: Givenness and Newness in Language Pro-
cessing. CSLI Publications, 2000.

[Malouf, 2000] R. Malouf. The order of prenominal adjec-
tives in natural language generation. InProceedings of
ACL 2000, 2000.

[Metzing and Brennan, 2003] C. Metzing and S.E. Brennan.
When conceptual pacts are broken.Journal of Memory
and Language, 49, 2003.

[Poesio and others, 1999] M. Poesio et al. Statistical NP
generation: A first report. InProceedings of the ESSLLI
Workshop on NP Generation, 1999.

[Roy, 2002] D. Roy. Learning visually grounded words and
syntax for a scene description task.Computer Speech and
Language special issue on Spoken Language Generation,
16(3–4), 2002.

[Shaw and Hatzivassiloglou, 1999] J. Shaw and V. Hatzivas-
siloglou. Ordering among premodifiers. InProceedings of
ACL 1999, 1999.

[Siddharthan and Copestake, 2004] A. Siddharthan and
A. Copestake. Generating referring expressions in open
domains. InProceedings of ACL 2004, 2004.

[van Deemter, 2000] K. van Deemter. Generating vague de-
scriptions. InProceedings of INLG 2000, 2000.

[van Deemter, 2002] K. van Deemter. Generating referring
expressions: Boolean extensions of the incremental algo-
rithm. Computational Linguistics, 28(1), March 2002.

[Varges and van Deemter, 2005] S. Varges and K. van
Deemter. Generating referring expressions containing
quantifiers. InProceedings of IWCS-6, 2005.

