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Abstract
Approaches to plural reference generation empha-
sise simplicity and brevity, but often lack em-
pirical backing. This paper describes a corpus-
based study of plural descriptions, and proposes
a psycholinguistically-motivated algorithm for plu-
ral reference generation. The descriptive strategy
is based on partitioning. An exhaustive evaluation
shows that the output closely matches human data.

1 Introduction
Content Determination for the Generation of Re-
ferring Expressions (GRE) starts from a Knowledge
Base (KB) consisting of a set of entities U and a set
of properties P represented as attribute-value pairs,
and searches for a description D ⊆ P which distin-
guishes a referent r ∈ U from its distractors. For
example, the KB in Table 1 represents 8 entities in a
2D visual domain, each with 6 attributes, including
their location, represented as a combination of hor-
izontal (X) and vertical (Y) numerical coordinates.
To refer to an entity an algorithm searches through
values of the different attributes.

GRE has been dominated by Dale and Reiter’s
(1995) Incremental Algorithm (IA), one version
of which, generalised to deal with non-disjunctive
plural references1 is shown in Algorithm 1 (van
Deemter, 2002). After initialising the description
D and the distractor set C [1.1–1.2], IAplur tra-
verses an ordered list of properties, called the pref-
erence order (PO) [1.3], which reflects general or
domain-specific preferences for attributes. For in-
stance, with the PO in the top row of the Table,
the algorithm first considers values of TYPE, then
COLOUR, and so on, adding a property to D if it is
true of the intended referents R, and excludes some

1Non-disjunctive descriptions, such as the large red chairs,
are logically a conjunction of literals. In disjunctive descrip-
tions such as the chair and the table, the and represents set
union (of things which are chairs or tables).

TYPE COLOUR ORIENTATION SIZE X Y
e1 desk red back small 3 1
e2 sofa blue back small 5 2
e3 desk red back large 1 1
e4 desk red front large 2 3
e5 desk blue right large 2 4
e6 sofa red back large 4 1
e7 sofa red front large 3 3
e8 sofa blue back large 3 2

Table 1: A visual domain

distractors [1.4]. The description and the distractor
set C are updated accordingly [1.5–1.6], and the de-
scription returned if it is distinguishing [1.7].

Compared to some predecessors which empha-
sised brevity (Dale, 1989), the IA is highly effi-
cient, because the use of the PO avoids exhaus-
tive combinatorial search, potentially overspecify-
ing the description. Overspecification and the use
of a PO have been justified on psycholinguistic
grounds. Speakers overspecify their descriptions
because they begin their formulation without ex-
haustively scanning a domain (Pechmann, 1989),
terminating the process as soon as a referent is dis-
tinguished (Belke and Meyer, 2002). They pri-
oritise the basic-level category (TYPE) of an ob-
ject, and salient, absolute properties like COLOUR

Algorithm 1 IAplur(R,U, PO)
1: D ← ∅
2: C ← U −R
3: for 〈A : v〉 ∈ PO do
4: if R ⊆ [[ 〈A : v〉 ]] ∧ [[ 〈A : v〉 ]]− C 6= ∅ then
5: D ← D ∪ {〈A : v〉}
6: C ← C ∩ [[ 〈A : v〉 ]]
7: if [[ D ]] = R then
8: return D
9: end if

10: end if
11: end for
12: return D



(Pechmann, 1989; Eikmeyer and Ahlsèn, 1996), as
well as locative properties in the vertical dimen-
sion (Arts, 2004). Relative attributes like SIZE are
avoided unless absolutely required for identification
(Belke and Meyer, 2002). This evidence suggests
speakers conceptualise referents as gestalts (Pech-
mann, 1989) whose core is the basic-level TYPE
(Murphy, 2002) and some other salient attributes
like COLOUR. Note that the IA does not fully mir-
ror these human tendencies, since it only includes
preferred attributes in a description if they remove
some distractors, whereas psycholinguistic research
suggests that people include them irrespective of
contrastiveness (cf. van der Sluis and Krahmer,
2005).

More recent research on plural GRE has de-
emphasised these issues, especially in case of dis-
junctive plural reference. The first concrete pro-
posal in this area, IAbool (van Deemter, 2002), first
tries to find a non-disjunctive description using Al-
gorithm 1. Failing this, it searches through disjunc-
tions of properties of increasing length, generating a
description in Conjunctive Normal Form (CNF). For
example, calling the algorithm with R = {e1, e2}
would result in a non-disjunctive description, since
both referents can be distinguished using 〈SIZE :
small〉. However, a conjunction wouldn’t suffice to
distinguish R = {e1, e8}, and IAbool would consider
combinations such as 〈TYPE : desk〉 ∨ 〈COLOUR :
blue〉. This generalised algorithm has three conse-
quences:

1. Efficiency: Searching through disjunctive
combinations results in a combinatorial explo-
sion (van Deemter, 2002).

2. Gestalts and content: The notion of a ‘pre-
ferred attribute’ is obscured, since it is dif-
ficult to apply the same reasoning that moti-
vated the PO in the IA to combinations like
(COLOUR ∨ SIZE).

3. Form: Descriptions can become logically very
complex (Gardent, 2002; Horacek, 2004).

Some proposals to deal with (3) include Gar-
dent’s (2002) non-incremental, constraint-based al-
gorithm to generate the briefest available descrip-
tion of a set. An alternative, by Horacek (2004),
combines best-first search with optimisation to re-
duce logical complexity. Neither approach benefits
from empirical grounding, and both leave open the

question of whether previous psycholinguistic re-
search on singular reference is at all applicable to
the plural disjunctive case.

This paper starts with an empirical analysis of
plural descriptions using a semantically transparent
corpus of descriptions elicited in well-defined do-
mains, of which Table 1 is an example. Based on the
data analysis, we propose and evaluate an efficient
algorithm for the generation of references to arbi-
trary sets. Our starting point is the assumption that
plurals, like singulars, evince preferences for certain
attributes. Based on previous work in Gestalt per-
ception (Wertheimer, 1938; Rock, 1983), we pro-
pose an extension of Pechmann’s Gestalts Princi-
ple, whereby plural descriptions are preferred if (a)
they maximise the similarity of their referents, us-
ing the same attributes to describe them as far as
possible; (b) prioritise salient (‘preferred’) attributes
which are central to the conceptual representation of
an object. We address (3) above by investigating the
logical form of plurals in the corpus. One strong de-
terminant of descriptive form is the basic-level cat-
egory of objects. For example, to refer to {e1, e2}
in the Table, an author has at least the following op-
tions:

(1) (a) the small desk and sofa

(b) the small red desk and the small blue sofa

(c) the small desk and the small blue sofa

(d) the small objects

We refer to (1a) as an aggregated disjunctive de-
scription, in that the property small has wide scope
scope over the coordinate NP desk and sofa (which
is logically a disjunction). By contrast, (1b,c)
are non-aggregated and overspecified because they
contain COLOUR when SIZE alone suffices. The
most economical description is (1d), which is non-
disjunctive. This is possible because it contains
a superordinate TYPE (object). Since basic-level
categorisation is preferred on independent grounds
(Rosch et al., 1976), we expect (1a–c) to be more
frequent. Note that (1b,c) represent a partition of R
and describe each element separately. In (1b), there
is considerable redundancy in including COLOUR
twice. The potential benefit of this is that the el-
ements of the partition are described in a parallel
fashion, using exactly the same attributes (SIZE and
COLOUR). This is not the case in (1c), which is non-
parallel. By hypothesis, parallelism adds to the per-
ceptual cohesion of the set. Given the psycholin-



<DESCRIPTION num=‘pl’>
<DESCRIPTION num=‘singular’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘red’>red</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘desk’>desk</ATTRIBUTE>
</DESCRIPTION>
and
<DESCRIPTION num=‘sg’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘blue’>blue</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘sofa’>sofa</ATTRIBUTE>
</DESCRIPTION>
</DESCRIPTION>

(〈SIZE : small〉 ∧ 〈COLOUR : red〉 ∧ 〈TYPE : desk〉)
∨

(〈SIZE : small〉 ∧ 〈COLOUR : blue〉 ∧ 〈TYPE : sofa〉)

Figure 1: Corpus annotation examples

guistic evidence, the hypothesised tendency to em-
phasise similarity may also be somewhat dependent
on the attributes involved, so that COLOUR should
be more likely to be redundantly propagated across
disjuncts than a relatively dispreferred attribute like
SIZE.

2 The data
The data for our study is a subset of a corpus of 900
references to furniture and household items, col-
lected via a controlled experiment involving 45 par-
ticipants. In addition to their TYPE, objects in the
domains have COLOUR, ORIENTATION and SIZE.
For each subset of these three attributes, there was
an equal number of domains in which the minimally
distinguishing description (MD) consisted of values
of that subset. For example, Table 1 represents a do-
main in which the intended referents, {e1, e2}, can
be minimally distinguished using only SIZE2. Thus,
overspecified usage of attributes can be identified
in authors’ descriptions. Domain objects were ran-
domly placed in a 3 (row) × 5 (column) grid, rep-
resented by X and Y in Table 1. These are relevant
for a subset of descriptions which contain locative
expressions.

Corpus descriptions are paired with an explicit
XML domain representation, and annotated with se-
mantic markup which makes clear which attributes
a description contains. The markup also enables the
compositional derivation of a logical form3. For ex-
ample, the XML representation of (1b) is shown in
Figure 1, which also displays the LF derived from it.

Descriptions in the corpus were elicited in 7 do-
mains with one referent, and 13 domains with 2
referents. Plural domains represented levels of a
Value Similarity factor. In 7 Value-Similar (VS)

2TYPE was not included in the calculation of MD.
3For details of corpus design and annotation, we refer to

(van der Sluis et al., 2006).

VS VDS
+Disj −Disj +Disj −Disj

+aggr 20.2 15.5 2.4 3.7
−aggr 64.3 – 93.9 –
% overall 84.5 15.5 96.3 3.7

Table 2: % disjunctive and non-disjunctive plurals

domains, referents were identifiable using identical
values of the minimally distinguishing attributes. In
the remaining 6 Value-Dissimilar (VDS) domains,
the minimally distinguishing values were different.
Table 1 represents a VS domain, where {e1, e2} can
be minimally distinguished using the same value of
SIZE (small). Thus, MD in VS was a logical con-
junction. In VDS, it was a disjunction since, if two
referents could be minimally distinguished by dif-
ferent values v and v′ of an attribute A, then MD had
the form 〈A : v〉 ∨ 〈A : v’〉. However, even in VS,
referents had different basic-level types. Thus, an
author faced with a domain like Table 1 had at least
the descriptive options in (1a–d).

Our analysis will focus on a stratified random
sample of 180 plural descriptions, referred to as PL1,
generated by taking 4 descriptions from each author
(2 each from VS and VDS conditions). We also use
the singular data (SG; N = 315). The remaining
plural descriptions (PL2; N = 405) are used for
evaluation.

3 The logical form of plurals
Descriptions in PL1 were first classified according
to whether they were non-disjunctive (cf. 1c) or
disjunctive (1a,b). The latter were further classified
into aggregated (1a) and non-aggregated (1b). Ta-
ble 2 displays the percentage of descriptions in each
of the four categories, within each level of Value
Similarity. Disjunctive descriptions were a major-
ity in either condition, and most of these were non-
aggregated. As noted in relation to (1b), these de-
scriptions correspond to partitions of the set of ref-
erents.

Since referents in VS had identical properties ex-
cept for TYPE values, the most likely reason for the
majority of disjunctives in VS is that people’s de-
scriptions represented a partition of a set of refer-
ents induced by the basic-level category of the ob-
jects. This is strengthened by the finding that the
likelihood of a description being disjunctive or non-
disjunctive did not differ as a function of Value Sim-
ilarity (χ2 = 2.56, p > .1). A χ2 test on over-
all frequencies of aggregated versus non-aggregated



Parallel Non-Parallel χ2 (p ≤ .001)
overspec. 24.6 75.4 92.467

underspec. 5.3 94.7 42.217
well-spec. 11 89 26

Table 3: Parallelism: % per description type

disjunctives showed that the non-aggregated de-
scriptions (‘true’ partitions) were a significant ma-
jority (χ2 = 83.63, p < .001). However, the
greater frequency of aggregation in VS compared
to VDS turned out to be significant (χ2 = 15.498,
p < .001). Note that the predominance of non-
aggregated descriptions in VS implies that proper-
ties are repeated in two disjuncts (resp. coordinate
NPs), suggesting that a certain kind of redundancy
is not problematic (contra, for example, Gardent,
2002).

3.1 Conceptual gestalts and similarity
Allowing for the independent motivation for set par-
titioning based on TYPE values, we suggested in §1
that parallel descriptions such as (1b) may be more
likely than non-parallel ones (1c), since the latter
does not use the same properties to describe the two
referents. Similarity, however, should also interact
with attribute preferences.

For this part of the analysis, we focus exclusively
on the disjunctive descriptions in PL1 (N = 150)
in both VS and VDS. The descriptions were cat-
egorised according to whether they had parallel
or non-parallel semantic structure. Evidence for
Similarity interacting with attribute preferences is
strongest if it is found in those cases where an
attribute is overspecified (i.e. used when not re-
quired for a distinguishing description). In those
cases where corpus descriptions do not contain loca-
tive expressions (the X and/or Y attributes), such an
overspecified usage is straightforwardly identified
based on the MD of a domain. This is less straight-
forward in the case of locatives, since the position
of objects was randomly determined in each do-
main. Therefore, we divided descriptions into three
classes: A description is underspecified if it does not
include a locative expression and omits some MD at-
tributes. A description is overspecified if either (a) it
does not omit any MD attributes, but includes loca-
tives and/or non-required visual attributes; or (b) it
omits some MD attributes, but includes both a loca-
tive expression and other, non-required attributes. A
description is well-specified otherwise.

Proportions of Parallel and Non-Parallel descrip-

Actual Predicted
p(A, SG) p(A, PPS) p(A, PPS)

COLOUR .680 .835 .61
SIZE .290 .359 .28

ORIENTATION .280 .269 .26
X-DIMENSION .440 .517 .52
Y-DIMENSION .630 .647 .65

Table 4: Actual and predicted usage probabilities

tions for each of the three classes are are shown
in Table 3. In all three description types, there is
an overwhelming majority of Parallel descriptions,
confirmed by a χ2 analysis. The difference in pro-
portions of description types did not differ between
VS and VDS (χ2 < 1, p > .8), suggesting that the
tendency to redundantly repeat attributes, avoiding
aggregation, is independent of whether elements of
a set can be minimally distinguished using identical
values.

Our second prediction was that the likelihood
with which an attribute is used in a parallel structure
is a function of its overall ‘preference’. Thus, we ex-
pect attributes such as COLOUR to feature more than
once (perhaps redundantly) in a parallel description
to a greater extent than SIZE. To test this, we used
the SG sample, estimating the overall probability of
occurrence of a given attribute in a singular descrip-
tion (denoted p(A, SG)), and using this in a non-
linear regression model to predict the likelihood
of usage of an attribute in a plural partitioned de-
scription with parallel semantic structure (denoted
p(A, PPS)). The data was fitted to a regression equa-
tion of the form p(A, PPS) = k × p(A, SG)S . The
resulting equation, shown in (2), had a near-perfect
fit to the data (R2 = .910)4. This is confirmed by
comparing actual probability of occurrence in the
second column of Table 4, to the predicted probabil-
ities in the third column, which are estimated from
singular probabilities using (2).

p(A, PPS) = .713 p(A, SG).912 (2)

Note that the probabilities in the Table con-
firm previous psycholinguistic findings. To the ex-
tent that probability of occurrence reflects salience
and/or conceptual importance, an order over the
three attributes COLOUR, SIZE and ORIENTATION
can be deduced (C>>O>>S), which is compatible
with the findings of Pechmann (1989), Belke and
Meyer (2002) and others. The locative attributes are

4A similar analysis using linear regression gave essentially
the same results.



also ordered (Y>>X), confirming the findings of
Arts (2004) that vertical location is preferred. Or-
derings deducible from the SG data in turn are ex-
cellent predictors of the likelihood of ‘propagating’
an attribute across disjuncts in a plural description,
something which is likely even if an attribute is re-
dundant, modulo the centrality or salience of the at-
tribute in the mental gestalt corresponding to the set.
Together with the earlier findings on logical form,
the data evinces a dual strategy whereby (a) sets
are partitioned based on basic-level conceptual cat-
egory; (b) elements of the partitions are described
using the same attributes to if these attributes are
easily perceived and conceptualised. Thus, of the
descriptions in (1) above, it is (1b) that is the norm
among authors.

4 Content determination by partitioning
In this section we describe IApart, a partitioning-
based content determination algorithm. Though
presented as a version of the IA, the basic strat-
egy is generalisable beyond it. For our purposes,
the assumption of a preference order will be main-
tained. IApart is distinguished from the original IA
and IAbool (cf. §1) in two respects: (a) It induces par-
titions opportunistically based on KB information,
and this is is reflected in the way descriptions are
represented. (b) The criteria whereby a property is
added to a description include a consideration of the
overall salience or preference of an attribute, and its
contribution to the conceptual cohesiveness of the
description. Throughout the following discussion,
we maintain a running example from Table 1, in
which R = {e1, e2, e5}.

4.1 Partitioned descriptions
IApart generates a partitioned description (Dpart)
of a set R, corresponding to a formula in Disjunc-
tive Normal Form. Dpart is a set of Description
Fragments (DFs). A DF is a triple 〈RDF, TDF,MDF〉,
where RDF ⊆ R, TDF is a value of TYPE, and MDF is
a possibly empty set of other properties. DFs refer
to disjoint subsets of R. As the representation sug-
gests, TYPE is given a special status. IApart starts
by selecting the basic-level values of TYPE, parti-
tioning R and creating a DF for each element of the
partition on this basis. In our example, the selection
of TYPE results in two DFs, with MDF initialised to
empty:

(3) DF1

〈
{e1, e5}, 〈TYPE : desk〉, ∅

〉
DF2

〈
{e2}, 〈TYPE : sofa〉, ∅

〉

Algorithm 2 updateDescription(〈A : V〉, R′)
for 〈RDF, TDF,MDF〉 ∈ Dpart do

if R′ = ∅ then
return

else if RDF ⊆ R′ then
MDF ←MDF ∪

{
〈A : v〉

}
R′ ← R′ −RDF

else if RDF ∩R′ 6= ∅ then
Rnew ← RDF ∩R′

DFnew ←
〈
Rnew, TDF,MDF ∪ {〈A : v〉}

〉
Dpart ← Dpart ∪

{
DFnew

}
RDF ← RDF −Rnew

R′ ← R′ −Rnew

end if
end for
if A = TYPE then

Dpart ← Dpart ∪
{〈

R′, 〈A : v〉, ∅
〉}

else
Dpart ← Dpart ∪

{
〈R′,⊥, {〈A : v〉}〉

}
end if

Although neither DF is distinguishing, RDF indicates
which referents a fragment is intended to identify.
In this way, the algorithm incorporates a ‘divide-
and-conquer’ strategy, splitting up the referential
intention into ‘sub-intentions’ to refer to elements
of a partition. Following the initial step of select-
ing TYPE, the algorithm considers other properties
in PO. Suppose 〈COLOUR : blue〉 is considered
first. This property is true of e2 and e5. Since
DF2 refers to e2, the new property can be added
to MDF2 . Since e5 is not the sole referent of DF1,
the property induces a further partitioning of this
fragment, resulting in a new DF. This is identical
to DF1 except that it refers only to e5 and contains
〈COLOUR : blue〉. DF1 itself now refers only to e1.
Once 〈COLOUR : red〉 is considered, it is added to
the latter, yielding (4).

(4) DF1

〈
{e1}, 〈TYPE : desk〉, {〈COLOUR : red〉}

〉
DF2

〈
{e2}, 〈TYPE : sofa〉, {〈COLOUR : blue〉}

〉
DF3

〈
{e5}, 〈TYPE : desk〉, {〈COLOUR : blue〉}

〉
The procedure updateDescription, which cre-

ates and updates DFs, is formalised in Algorithm 2.
When some property 〈A : v〉 is found to be ‘useful’
in relation to R (in a sense to be made precise), this
function is called with two arguments: 〈A : v〉 itself,
and R′ = [[ 〈A : v〉 ]] ∩ R, the referents of which
〈A : v〉 is true. The procedure iterates through the
DFs in Dpart, adding the property to any DF such
that RDF ∩ R′ 6= ∅, until R′ is empty and all ref-
erents in it have been accounted for [2.2]. As indi-



cated in the informal discussion, there are two cases
to consider for each DF:

1. RDF ⊆ R′ [2.4]. This corresponds to our exam-
ple involving 〈COLOUR : blue〉 and DF2. The
property is simply added to MDF [2.5] and R′

is updated by removing the elements thus ac-
counted for [2.6].

2. RDF ∩ R′ 6= ∅ (but condition 1 does not hold)
[2.7]. This occurred with 〈COLOUR : red〉
in relation to DF1. The procedure initialises
Rnew, a set holding those referents in RDF

which are also in R′ [2.8]. A new DF (DFnew)
is created, which is a copy of the old DF, except
that (a) it contains the new property; and (b) its
intended referents are Rnew [2.9]. The new DF
is included in the description [2.10], while the
old DF is altered by removing Rnew from RDF

[2.11]. This ensures that DFs denote disjoint
subsets of R.

Two special cases arise when Dpart is empty, or
there are some elements of R′ for which no DF ex-
ists. Both cases result in the construction of a new
DF. An example of the former case is the initial state
of the algorithm, when TYPE is added. As in exam-
ple (3), the TYPE results in a new DF [2.16]. If a
property is not a TYPE, the new DF has T set to null
(⊥) and the property is included in M [2.18]5. Note
that this procedure easily generalises to the singular
case, where Dpart would only contain one DF.

4.2 Property selection criteria
IApart’s content determination strategy maximises
the similarity of a set by generating semantically
parallel structures. Though contrastiveness plays a
role in property selection, the ‘preference’ or con-
ceptual salience of an attribute is also considered in
the decision to propagate it across DFs.

Candidate properties for addition need only be
true of at least one element of R. Because of the
partitioning strategy, properties are not equally con-
strastive for all referents. Therefore, distractors are
held in an associative array C, such that for all
r ∈ R, C[r] is the set of distractors for that referent
at a given stage in the procedure. Contrastiveness is

5This only occurs if the KB is incomplete, that is, there some
entities have no TYPE, so that R is not fully covered by the
intended referents of the DFs when TYPE is initially added.

defined via the following Boolean function:

contrastive(〈A : v〉, R)↔
∃r ∈ R : C[r]− [[ 〈A : v〉 ]] 6= ∅ (5)

We turn next to salience and similarity. Let
A(Dpart) be the set of attributes included in Dpart.
A property is salient with respect to Dpart if it sat-
isfies the following:

salient(〈A : v〉, Dpart)↔
A ∈ A(Dpart) ∧ (.713 p(A, SG).912 > 0.5) (6)

that is, the attribute is already included in the de-
scription, and the predicted probability of its be-
ing propagated in more than one fragment of a de-
scription is greater than chance. A potential prob-
lem arises here. Consider the description in (3)
once more. At this stage, IApart begins to con-
sider COLOUR. The value red is true of e1, but non-
contrastive (all the desks which are not in R are red).
If this is the first value of COLOUR considered, (6)
returns false because the attribute has not been
used in any part of the description. On later con-
sidering 〈COLOUR : blue〉, the algorithm adds it to
Dpart, since it is contrastive for {e2, e5}, but will
have failed to propagate COLOUR across fragments.
As a result, IApart considers values of an attribute in
order of discriminatory power (Dale, 1989), defined
in the present context as follows:

|[[ 〈A : v〉 ]] ∩R| + |[[ 〈A : v〉 ]]− (U −R)|
|[[ 〈A : v〉 ]]|

(7)

Discriminatory power depends on the number of
referents a property includes in its extension, and
the number of distractors (U − R) it removes.
By prioritising discriminatory values, the algorithm
first considers and adds 〈COLOUR : blue〉, and
subsequently will include red because (6) returns
true.

To continue with the example, at the stage repre-
sented by (4), only e5 has been distinguished. ORI-
ENTATION, the next attribute considered, is not con-
trastive for any referent. On considering SIZE, small
is found to be contrastive for e1 and e2, and added to
DF1 and DF2. However, SIZE is not added to DF3, in
spite of being present in two other fragments. This
is because the probability function p(SIZE, PPS) re-
turns a value below 0.5 (see Table 4, reflecting the
relatively low conceptual salience of this attribute.
The final description is the blue desk, the small red



Mean Mode PRP

IAbool
+ LOC 7.716 7 .7
− LOC 8.335 7 3.5

IApart
+ LOC 4.345 4 6.8
− LOC 1.93 0 44.7

Table 5: Edit distance scores

desk and the small blue sofa. This example illus-
trates the limits set on semantic parallelism and sim-
ilarity: only attributes which are salient enough are
redundantly propagated across DFs.

5 Evaluation
IApart was compared to van Deemter’s IAbool (§1)
against human output in the evaluation sub-corpus
PL2 (N = 405). This was considered an ade-
quate comparison, since IAbool shares with the cur-
rent framework a genetic relationship with the IA.
Other approaches, such as Gardent’s (2002) brevity-
oriented algorithm, would perform poorly on our
data. As shown in §3, overspecification is extremely
common in plural descriptions, suggesting that such
a strategy is on the wrong track (but see §6).

IApart and IAbool were each run over the domain
representation paired with each corpus description.
The output logical form was compared to the LF
compiled from the XML representation of an au-
thor’s description (cf. Figure 1). LFs were repre-
sented as and-or trees, and compared using the tree
edit distance algorithm of Shasha and Zhang (1990).
On this measure, a value of 0 indicates identity.

Because only a subset of descriptions con-
tain locative expressions, PL2 was divided into
a +LOC dataset (N = 148) and a −LOC
dataset (N = 257). The preference orders for
both algorithms were (C>>O>>S) for −LOC and
(Y>>C>>X>>S>>O) for +LOC. These are sug-
gested by the attribute probabilities in Table 4.

Table 5 displays the mean Edit score obtained by
each algorithm on the two datasets, the modal (most
frequent) value, and the perfect recall percentage
(PRP), the proportion of Edit scores of 0, indicating
perfect agreement with an author.

As the means and modes indicate, IApart outper-
formed IAbool on both datasets, with a consistently
higher PRP (this coincides with the modal score in
the case of −LOC). Pairwise t−tests showed that
the trends were significant in both +LOC (t(147) =
9.28, p < .001) and −LOC (t(256) = 10.039,
p < .001).

IAbool has a higher (worse) mean on −LOC, but

a better PRP than on +LOC. This apparent dis-
crepancy is partly due to variance in the edit dis-
tance scores. For instance, because the Y attribute
was highest in the preference order for +LOC, there
were occasions when both referents could be identi-
fied using the same value of Y, which was therefore
included by IAbool at first pass, before considering
disjunctions. Since Y was highly preferred by au-
thors (see Table 4), there was higher agreement on
these cases, compared to those where the values of
Y were different for the two referents. In the latter
case, Y was only when disjunctions were consid-
ered, if at all. The worse performance of IApart on
+LOC is due to a larger choice of attributes, also re-
sulting in greater variance, and occasionally incur-
ring higher Edit cost when the algorithm overspec-
ified more than a human author. This is a poten-
tial shortcoming of the partitioning strategy outlined
here, when it is applied to more complex domains.

(8) is an example of the algorithms’ output, in a
domain where COLOUR sufficed to distinguish the
referents, which had different values of this attribute
(i.e. an instance of the VDS condition). The formula
returned by IApart (8a) is identical to the (LF of) the
human-authored description (with Edit score of 0).
The output of IAbool is shown in (8b).

(8) (a)
(
fan ∧ green

)
∨

(
sofa ∧ blue

)
(b)

(
sofa ∨ fan

)
∧ small ∧ front ∧

(
blue ∨ green

)
As a result of IAbool’s requiring a property or dis-
junction to be true of the the entire set of ref-
erents, COLOUR is not included until disjunctions
are considered, while values of SIZE and ORIEN-
TATION are included at first pass. By contrast,
IApart includes COLOUR before any other attribute
apart from TYPE. Though the data analysis sug-
gests that overspecification is common in plural
descriptions, IAbool overspecifies with the ‘wrong’
attributes (those which are relatively dispreferred
compared to COLOUR). The rationale in IApart is to
overspecify only if a property will enhance referent
similarity, and is sufficiently salient. As for logical
form, the Conjunctive Normal Form output of IAbool

increases the Edit score, given the larger number of
logical operators in (8b) compared to (8a).

6 Summary and conclusions
This paper presented an empirical study of plural
reference, which showed that people undertake the
dual strategy of partitioning sets based on the basic
level TYPE of their elements and often redundantly



propagating attributes across disjuncts in adescrip-
tion, modulo their salience. Our algorithm per-
forms partitioning opportunistically, using KB in-
formation, and extends the notion of utility of a
property beyond contrastiveness, utilising a statis-
tical model of attribute salience. Evaluation results
were positive, showing that these principles are on
the right track. Though presented as a generalisation
of Dale and Reiter’s IA, the core aspects of the al-
gorithm are more widely applicable. The partition-
ing strategy is related to a proposal by van Deemter
and Krahmer (2006), which searches exhaustively
for a partition of R whose elements can be described
non-disjunctively. This differs from the present ap-
proach in that it is non-incremental and computa-
tionally costly.

The work described here highlights some open
questions. In IApart, a partition can be induced by
any property. An alternative would be to aggre-
gate same-type fragments of a description, produc-
ing NPs such as the blue and red chairs rather than
the blue chair and the red chair. Limits on syntac-
tic complexity of NPs are bound to play a role here,
perhaps along lines suggested by Horacek (2004).

Though our data shows overspecification is often
desirable, a preference order can make this exces-
sive. In Table 1, a reference to all the entities except
{e1, e2} might use COLOUR, SIZE and ORIENTA-
TION, rather than just the large desks and sofas. As
we pointed out in §5, brevity-oriented alternatives,
such as Gardent (2002), would perform poorly on
our corpus data. Nevertheless, the balance between
using salient attributes and being concise remains
unclear. For example, the extent to which a property
is shared among referents may be involved in the de-
cision to use an otherwise dispreferred attribute (e.g.
{e3, . . . , e8} are all of the same SIZE), suggesting
that our notion of similarity could be extended, and
taken beyond a preference-order based strategy.

Another way of simplifying descriptions involves
negation (the desks which are not red) (Horacek,
2004). Though it can be handled relatively eas-
ily (van Deemter, 2002), there are several untack-
led empirical issues. In addition with those al-
ready raised, and the arguments made in this pa-
per, they shown that many open questions remain
despite more than a decade of intensive research in
GRE. These questions are largely empirical.
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