Generating referring expressions
containing quantifiers

Sebastian Varges & Kees van Deemter
Information Technology Research Institute
University of Brighton, UK
{Sebastian.Varges|Kees.van.Deemter}@itri.brighton.ac.uk

Recent work on the Generation of Referring Expressions has increased
the generating capability of algorithms in this area. This paper asks
whether the models underlying these proposals can still be used if even
more complex referring expressions are generated. To discuss this issue,
we will investigate a variety of referring expressions that pose difficul-
ties to current generation algorithms. In particular, we will discuss
the difficulties associated with quantified referring expressions (such
as ‘those women who have fewer than two children’, or ‘the people who
work for exactly 2 employers’) and explain how they can be generated
by extending the inference-based approach described in (Varges, 2004).

1 GRE: descriptions using conjunctions of atoms,
and beyond

The Generation of Referring Expressions (GRE) is a key task in most Nat-
ural Language Generation (NLG) systems, which is usually viewed as part
of microplanning (Reiter and Dale 2000, Chapter 5). Simply put, GRE
amounts to finding suitable descriptions in natural language that allow a
hearer/reader to identify the intended referent. GRE systems take their
departure from a Knowledge Base (KB) of information that is shared be-
tween speaker and hearer, and which can therefore be used by the speaker
(that is, the computer) to identify the intended referent for the hearer. The
starting point for most recent work in this area is the Incremental Algo-
rithm of Dale and Reiter (1995). It uses an Attribute:Value notation
to represent properties in the KB; descriptions are represented as lists of
Attribute:Value pairs, for example the following list of two such pairs
[Type : Instrument, Colour : Red] which later modules may realize linguisti-
cally as ‘the red instrument’ or ‘the instrument that is red’. Logically, a list
of Attribute:Value pairs is interpreted as a conjunction of properties. In
the last decade, algorithms of this kind have been adapted and extended in
various ways, allowing the use of more complex properties, for example

1. Relational properties (e.g., ‘the dog in the shed’, Dale & Haddock
1991),

2. Boolean properties (containing negation, disjunction and conjunction
of properties) (van Deemter 2002, Gardent 2002, Horacek 2004).

Current GRE algorithms are very limited in that there are many types of
referring NPs that they are unable to generate.! Here we will explore the
possibility of further extensions.

2 GRE: Formalizing the problem

As GRE becomes more complex, two things become increasingly important.
One is to use formally neat and well-understood formalisms, the other is
to use fast algorithms. Both issues were addressed by a recently proposed
formalism using labeled directed graphs (Krahmer et al. 2003). The issues
that we will discuss in section 3 are relevant to any type of GRE, but they
show themselves with particular force when applied to the graph-based for-
malism, which is why we will use it as an example. Labeled directed graphs
are formally well understood, many results about its computational prop-
erties are known, and fast optimizations are available for many algorithms.
An additional advantage appears to be that the graph-based approach repre-
sents descriptions using the exact same formalism as the KB. We shall later
see, however, that this is also the main limitation of the approach. First,
however, let us informally sketch the graph-based approach.

Both the domain model (the ‘scene graph’) and the description are la-
beled directed graphs. Properties and types are looping edges labeled with
Attribute:Value pairs, whereas relations are modeled as edges between
nodes. Consider the scene graph depicted in figure 1. There are four musi-
cians and four red instruments. Musician my drops instrument ¢;, Musician
mo holds instrument iy, musician my4 holds instrument ¢4 and musician msg
holds the three instruments i, i3 and i4. Let us assume that the designated
target element s is i1, i.e. we want to generate an expression referring to
domain object ;.

Representing both the description and the scene using graphs allows one
to view GRE as a graph construction problem. The task is to construct a
description pair that ‘refers uniquely’ to a given scene pair. The notion
‘refers uniquely’ is defined via the notion of a subgraph isomorphism
(see Krahmer et al. 2003 for more details). Determining whether a given

!Non-referring NPs are harder still, and usually not addressed in GRE.

type:musician

type:musician

type:musician

type:musician

Figure 1: A scene graph involving eight objects

type:instrumen; s pe:instrument
colour: red %olour- red
S
S

Figure 2: Three possible description graphs

description graph (with a designated element in it) refers uniquely to a
designated target element in the description graph becomes a matter of
comparing the two graphs.

Figure 2 shows a number of description graphs, each of which has s as
its designated element. The first two of the three description pairs refer to
s but not uniquely (they may also refer to the ‘confusables’ iy, i3, i4), while
the right-most description graph refers to s uniquely. It might be worded
as ‘the red thing that was dropped’ (many other references are possible of
course).

Reference to sets is achieved by constructing a description graph that
uniquely refers to a set of target referents. In van Deemter and Krahmer
(IN PRESS), it is shown that a number of more complex phenomena can also
be handled, namely Boolean properties, degrees of salience (Krahmer and
Theune 2002), and context-dependent properties such as ‘large(st)’ in ‘the
large(st) cat’ (van Deemter 2000).

3 Generating Quantified Referring Expressions

In this paper, we will focus on a limitation of the graph approach that
seems difficult to repair. The graph-based approach requires every descrip-
tion graph to look like a scene graph. This means that descriptions can
never contain any logical structure that is not already present in the scene

graph. This rules out, for example, descriptions like ‘those musicians who
play fewer than three instruments’ simply because things like ‘fewer than
three instruments’ cannot be expressed. Imagine that we somehow found a
way of interpreting a description pair as saying ‘musicians who play fewer
than three instruments’. The idea of a subgraph isomorphism is essentially
existential in nature: the definitions of section 2 dictate that the descrip-
tion refers if there ewists a subgraph of the scene graph such that a truth-
preserving bijection between subgraph and scene graph can be found. But
this would predict incorrectly that the description refers if, according to the
scene graph, some musicians played ten instruments, for in this case we se-
lect a subgraph that leaves out a number of the instruments. In other words:
the idea of a subgraph isomorphism is limited to the case of monotonically
increasing quantifiers (e.g. Barwise and Cooper 1981): it works well for
‘those musicians who play more than three instruments’ but not for ‘those
musicians who play fewer than three instruments’ or ‘those musicians who
play exactly three instruments’.

The task that we are setting ourselves here is to generate complex
referring expressions of this kind, in a framework that has — ideally — the
same advantages as the graph-based approach.

With quantified referring expressions we are entering the domain of rel-
ative clauses. In principle, relative clauses can contain anything. This is
brought out perhaps most vividly by Montague’s PTQ system, for example,
which contains the following rule (which overgenerates and exaggerates the
problem slightly as a result):

It CePey and ¢ € Pr then Fi3,)((,¢) € Pcn, where
Fi3.0)(¢,¢) = "¢ such that ¢"”; and ¢’ comes from ¢ by replac-
ing each occurrence of he, or him,, by he/she/it or him/her/it
respectively, according as (...)’

This means that ¢ can be literally any sentence of the language.? Given
the almost unlimited scope of the problem, we cannot solve it in its full
breadth, but we will attack what we see as the core problem: to generate
distinguishing descriptions of the form

[The [CN (that are) R-ing D CN]cN]|nP”,

*If ¢ does not contain he, or him, then F(3 ,)({, #)= "¢ such that ¢, e.g., ‘woman such
that John walks’.

where C'N is a (potentially complex) Common Noun, R is a verb having
two argument slots, D is a determiner expressing a quantifier that is either
monotonically increasing, or monotonically decreasing, or none of the two
(as when @ = ‘exactly 3’).

4 The inferential approach to GRE

Partly in response to the representational problems of the graph approach,
Varges (2004) proposed the ‘inferential approach’ as an alternative. It uses
boolean combinations of attributes, types and relations to describe individ-
uals and sets of objects. The approach can be characterized as ‘inferential’
in the sense that it derives facts from a domain representation and uses
these as ingredients for the construction of referring expressions. Thus, in
contrast to the graph approach, there is a separation between the domain
representation and the representation of the logical content of the referring
expressions. This avoids the above-mentioned problem of having to express
both within the same representational framework.

The inferential approach to GRE tries to find all combinations of prop-
erties that are true of a given target referent — and, more specifically,
those combinations that distinguish the target from all distractors. The
approach pairs the logical forms derived from the domain model with the
corresponding ‘extensions’, the set of objects that the logical form de-
notes. In our example domain, the set of all domain objects for which
attribute ‘colour’ has value ‘red’ contains objects i1, 23, i3 and i4. This
is represented as the pair <attr_val(colour : red),{ii,is,i3,i4}>. Ob-
ject types are similarly described by pairs of logical form and extension:
<type(musician), {m, mo, ms, my}>. This also allows us to represent the
super- and subtypes of the types associated with the domain objects, for
example the set of all ‘artifacts’ or the set of all ‘persons’ if a subsumption
hierarchy is defined in the domain model.

The extension serves as the basic interface for combining pairs of logical
form and extension (in what follows, we will use the term ‘descriptions’ for
these pairs). For example, conjoining the logical forms of two descriptions
requires us to intersect their extensions. Likewise, negation of a logical form
means forming the complement set of the corresponding extension (under a
closed world assumption), and disjunctive descriptions are built by forming
the: closed world assumption union of the extensions. Relations are regarded
as a means of relating the sets of objects described by two extensions, for
example those that hold something and those that are being held. Thus,

given two descriptions, we consult the domain model to check whether a
given relation holds between at least one pair of objects in the two extensions.
If this is the case, we combine the descriptions by means of the relation in
question, for example type(musician) + relation(hold) + type(instrument).
We can also use the same mechanism to find the set of objects for which the
relation does not hold.

Relations involve (at least) two descriptions, each with their correspond-
ing extension, but our combination operations require the existence of a
single extension in every description. We solve this potential problem by
introducing the notion of the ‘focus’ of a relational description. In essence,
this means deciding on which one of the descriptions involved we want to
focus, for example on ‘the musicians holding the instruments’ or on ‘the
instruments being held by the musicians’?

In figure 3, we detail the description-combining rules and give examples
of descriptions and the corresponding realizations. The relation rules de-
scribed deal with binary relations only.? Since there are two options for the
focus of the output of the relation rule, and two options for positive and
negated relations, four relational descriptions can be produced.

A major factor in the conception of the inferential approach were is-
sues of realization and search. Content determination, i.e. the generation
of descriptions, is closely linked to (bottom-up) realization: only descrip-
tions that have been successfully realized can be recombined further. This
prevents the generation of ever more complex descriptions that cannot be re-
alized. Furthermore, surface realizations of partial referring expressions are
combined compositionally. This allows us to define search algorithms that
make use of monotonic cost functions to score competing referring expres-
sions. For example, we may search for the referring expression that contains
the smallest number of words and we can exploit the fact that realizations
are concatenated compositionally (Varges 2004).

5 Generating quantified referring expressions in
the inferential approach

The inference rules described in the previous section can identify those musi-
cians that hold an instrument and those that do not. They can also identify
those instruments that are held by a musician and those that are not (see

3We believe our approach can be straightforwardly extended to n-ary relations for
(n>2).

1. Conjunction: given two descriptions dy and ds, generate a new descrip-
tion ds whose extension extq, is the intersection extq, N extq,, for example
<(type(instrument) A attr_val(colour : red)), {i1, 2, i3,94}>.

Realization: ‘the red instruments’.

2. Disjunction: given two descriptions d; and di, generate a new descrip-
tion ds whose extension exty, is the union extq, U extq,, for example
<(type(musician) V type(instrument)), {i1,i2, i3, 14, M1, M2, M3, M4} >.
Realization: ‘the musicians or the instruments’.

3. Negation: given a description dj, generate a new description dy whose ex-
tension extq, is the complement exty, , for example
<—type(instrument), {mi, ma, ms, ms}>. Realization: ‘Not an instrument’.

4. Relations: given two descriptions d; and dy and a relation name rel:

o let extension extgom pos contain all o; € exty, that are in domain of rel
with at least one member of exty, in its range.

o let extension extqom,neg contain all o; € exty, that are not in domain
of rel with any member of exty, in its range.

o let extension extrqn pos contain all o; € exty, that are in range of rel
with at least one member of exty, its domain.

o let extension ext,qn neg contain all o; € exty, that are not in range of
rel with any member of exty, in its domain.

4.1 generate new description d3 with extension extiom,pos
and focus on domain of rel, for example:
<hold(FOCU S (type(musician)), type(instrument)), {ma, ms, ma}>.
Realization: ‘the musicians holding the instruments’.

4.2 generate new description ds with extension
erlgommeg and focus on domain of rel, for example
<=hold(FOCU S (type(musician)), type(instrument)), {m1}>.
Realization: ‘the musician not holding the instrument’.

4.3 generate new description dy with extension
ertranpos and focus on range of rel, for example
<hold(type(musician), FOCU S (type(instrument))), {iz, i3, i4}>.
Realization: ‘the instruments being held by the musicians’.

4.4 generate new description dg with extension
erlranneg and focus on range of rel, for example
<=hold(type(musician), FOCU S (type(instrument))), {i1}>.
Realization: ‘the instrument not being held by the musicians’.

Figure 3: Content determination rules of inference-based GRE without
quantification

figure 3). However, they cannot generate the following referring expressions
although the appropriate information is available in the domain:

(1) a. {mg,m4}: ‘the musicians holding exactly one instrument’,
b. {ms}: ‘the musician holding exactly three instruments’,
c. {iz}: ‘the instrument being held by exactly one musician’,

d. {ig,i4}: ‘the instruments being held by exactly two musicians’.

Being able to generate these NPs is clearly desirable since without using
quantifiers one is not able to ‘refer to’ the sets of objects (the extensions) on
the left of (1). In other words, quantifiers increase the expressibility of the
referring expression generator, and our goal is to extend the inferential ap-
proach to the generation of quantified referring expressions such as examples
(la-d).

The following ingredients seem to be necessary in our compositional
framework: as before, we will need unquantified NPs such as ‘the musi-
ctans’. We will also need a relation rule. In addition, we also seem to
require the generation of quantified NPs such as ‘exactly one instrument’.
This immediately poses a problem to the inferential approach as outlined
above: the NP ‘exactly one instrument’ can "refer” to any of the four in-
struments in the example domain of figure 1. This can be represented as
a set-of-sets {{i1}, {ia}, {is}, {i4}}. However, this is incompatible with the
single-set interface required by the already established rules. There seem
to be at least the following options for dealing with this problem: First,
one could extend the entire framework for dealing with set-of-sets represen-
tations. Second, one could generate individual descriptions for each of the
possible extensions, i.e. an NP ‘exactly one instrument’ for extension {i;}
and another one for {i} etc. Third, one can try to find a way of generating
quantified descriptions without being forced to represent the ‘uncertainty’
expressed by set-of-sets containing more than one set. In the following, we
investigate the last of these options.

5.1 Generating quantified descriptions using single-set rep-
resentations

At a first glance, it may seem impossible to generate quantified relational
descriptions without representing extensions as set-of-sets. However, when
looking more closely at the examples of quantified referring expressions we

set out to generate (examples 1), we see that it is always the non-focus
description that is quantified. In other words, the relational description
incorporating the quantified NP still has a single-set focus extension: we
know exactly which musicians hold two instruments, for example. Thus, the
relational description can be combined with any other description as before.

This still leaves the problem that in a compositional approach it seems
to be necessary to generate NPs such as ‘exactly one musician’, which does
appear to require a set-of-sets representation. However, even when using a
bottom-up algorithm for realization, generation is triggered by logical forms
(‘descriptions’). It is possible to generate a logical form for the quantified
relation but then realize it in a more template-based way ‘in one go’. At the
realization level, this can be done by combining a focus NP with a non-focus
Nbar constituent, for example NP ‘the musicians’ 4+ ‘holding exactly two’ +
Nbar ‘instruments’, or NP ‘the instruments’ + ‘being held by exactly two’
+ Nbar ‘musicians’. This alone is not sufficient in general as it prevents
the quantification of more complex NPs. Therefore, in order to increase
expressibility at the realization level (while keeping the compositionality of
surface forms), we also use combinations such as ‘ezactly one of + NP (the
musicians or the instruments)’, for example.

The next issue is the required content determination rule, and here the
advantages of the inferential approach become clear: if we can infer a relation
involving quantification from the domain model, then we can generate the
appropriate description and realize it. More formally:

Rule 5: Given already-realized descriptions di and ds, a cardinal N and a
relation name rel:

e let extension extqom,card:n contain all o; € exty, that are in do-
main of rel and map to exactly N o; € exty,.

e let extension ext,qngecard:n contain all o; € exty, that are in
range of rel and are mapped to by exactly N o; € exty, .

5.1 generate new description d3 with extension extqom cara:n, focus
on domain of rel and cardinal quantification of range of rel, for
example:
<hold(FOCU S (type(musician)), CARDs(type(instrument))), {ms}>.
Realization: ‘the musictan holding exactly three instruments’.

5.2 generate new description d4 with extension ext,qnge, card:N, focus
on range of rel and cardinal quantification of domain of rel, for
example:

<hold(C ARDy(type(musician)), FOCU S (type(instrument))), {iz, i4}>.
Realization: ‘the instruments being held by exactly two musi-
ctans’.

Rule 5 imposes a distributive reading of quantification: in the last exam-
ple, each instrument individually is being held by two musicians (although
the two sets of musicians do not need to be disjoint). A collective reading
can be obtained by accumulating the domain objects in the extensions to be
quantified over across mappings to/from the focus extension. In addition to
the desired output, rule 5 also triggers the generation of ‘redundant’ output
such as:

(2) {mg,m4} = ‘(the musicians holding exactly one instrument) holding
exactly one instrument’.

The generation of (2) can be prevented by applying a constraint that
requires the focus extension to be reduced when attempting further combi-
nations. This ‘redundancy constraint’, originally developed for constraining
rules 1-4 (Varges 2004), can also be used for dealing with quantified refer-
ring expressions: in (2), the focus extension realized by the NP in brackets
already refers to {ms, m4}. Thus, the redundant composition can be pre-
vented because the focus extension is not reduced.

6 Discussion: possible extensions and limitations

The currently implemented generator without quantification uses 34 descrip-
tion building rules (distinguishing between negation of different description
types, amongst others) and 21 rules for NP generation. The rules of the
generator are expressed as productions in an expert system shell (JESS,
Friedman-Hill 2003), the knowledge base of which serves as the chart of our
chart generator. Quantification as described in the previous section adds one
description building rule (implementing rule 5) and two realization rules (for
gerunds in active and passive) to the system but leaves the existing rule base
unchanged. This has practical (software engineering) advantages over chang-
ing the entire system to dealing with extensions represented as set-of-sets
(the first option mentioned in section 5). The rules of our expert system-
based implementation tend to be more complex than traditional grammar
rules, for example making function calls to compute the extensions.

Our approach can be extended to generating ‘fewer than N’ and ‘more
than N’. For determining N, we only use the cardinals established in the

10

computations for generating ‘exactly’-NPs. In addition to the computational
advantage of limiting the number of Ns that need to be considered, this
also avoids problems concerning false implicatures since ‘fewer than three
X’ seems to imply that there are also ‘exactly three X’ or ‘more than three
X’. Other ‘precise’ quantifiers such as ‘every’ or ‘at least’ can be treated
similarly. ‘Imprecise’ quantifiers such as ‘some’, ‘most’ or ‘many’ are harder
to deal with because they have to be made precise in order to handle them.
However, this is a general research issue, not a particular problem of the
inferential approach.

Quantified expressions can be composed recursively as example (2)
shows. By using the extension as the main interface between descriptions,
arbitrarily nested NPs can be generated. Considering Montague’s PTQ sys-
tem (section 3), our ¢s cannot be any string of the language but have to
restrict the set of denoted domain objects. This is due to the redundancy
constraint which contains overgeneration. Our treatment of quantifiers in-
herits this advantage from the already established inferential framework.

On the other hand, the inferential approach still generates large num-
bers of referring expressions. In a recent paper, Norman Creaney (Creaney
1999) proposed a principle of Informativity for ranking and selecting among
different (non-referring) quantified NPs in NLG, each of which is verified by
a given model. Informativity could be used, in the setting of the present
paper (where the quantifiers in question are part of referring expressions),
to rank referring expressions that pick out the same set of domain objects.
In other words, Informativity would only apply within equivalence classes.
(In a more sophisticated approach, there could be a trade-off between Infor-
mativity and other goals such as minimizing surface length.) However, the
ranking of referring expressions is beyond the scope of this paper.

There are also limitations to our approach, and it is informative to point
these out: our basic strategy is to avoid having to represent the uncertainty
involved in generating NPs such as ‘exactly two trumpets’. However, it
seems that such constituents are necessary to capture some of the syntactic
phenomena we would like to handle, for example ‘exactly two trumpets or
fewer than five drums’, or ‘holding two trumpets or blowing exactly one flute’.
It seems to us that these could only be handled by more radical changes to
the framework if we want to avoid the introduction of additional special-
purpose content and realization rules. On the other hand, for practical
purposes, using special-purpose rules may be an option because it avoids
the complexities associated with set-of-sets representations.

The example domain used in this paper contains only a few domain
objects, begging the question how our approach scales to more densely pop-

11

ulated domains. Our strategy in such cases is to make the agenda-based
chart algorithm more goal-directed by changing the agenda ordering. In-
stead of generating descriptions of all domain objects in parallel we give
preference to those descriptions that are ‘salient’ in some way, for example
due to salient attributes such as colour or spatial proximity to the target
object(s). This may mean loosing optimality. However, humans are not
always optimal either which may be the result of similar time/processing
constraints. Goal-directed search for GRE is largely left to future work.

7 Conclusion

In this paper, we have discussed the implications of letting a GRE program
generate referring expressions containing quantifiers, a problem that has not
been addressed before, to the best of our knowledge. We have shown that
the graph-based approach faces substantial problems when it comes to rep-
resenting quantifiers and with respect to its operational core, the subgraph
isomorphism algorithm. We have shown how another approach to GRE, the
‘inferential approach’ which builds on the proposal of Varges (2004), avoids
the representational difficulties of the graph approach by using different
types of representations for domain model and descriptions. Furthermore,
it is extensible in the sense that new phenomena (quantifiers, in this case)
can be handled by the introduction of additional inference rules.

8 Acknowledgments

Our thanks go to Albert Gatt for helpful comments on this paper. The work
reported here was carried out as part of the TUNA project, which is funded by the
UK’s Engineering and Physical Sciences Research Council (EPSRC) under grant
number GR/S13330/01.

9 References

Barwise, J. and Cooper, R. (1981). Generalized Quantifiers And Natural Lan-
guage., Linguistics and Philosophy 4 (1981):159-219.

Chartrand, G. and O. Oellermann (1993). Applied and Algorithmic Graph Theory,
McGraw-Hill, New York.

Creaney, N. (1999). Generating Quantified LFs from Raw Data. In R. Kibble
and K. van Deemter (Eds.), Procs. of workshop on ‘The Generation of Nominal
Expressions’, 11th European Summer School in Logic, Language, and Information
(ESSLLI’99), Utrecht.

12

Dale, R. (1992). Generating Referring Expressions: Constructing Descriptions in
a Domain of Objects and Processes, The MIT Press, Cambridge, Mass.

Dale, R. and N. Haddock (1991). Generating Referring Expressions involving Re-
lations, Proceedings of the European Meeting of the Association for Computational
Linguistics (EACL 1991), Berlin, 161-166.

Dale, R. and E. Reiter (1995). Computational Interpretations of the Gricean
Maxims in the Generation of Referring Expressions, Cognitive Science 18: 233-263.

van Deemter, K. (2000). Generating Vague Descriptions, Proceedings of the First
International Conference on Natural Language Generation (INLG 2000), Mitzpe
Ramon.

van Deemter, K. (2002) Generating Referring Expressions: Boolean Extensions of
the Incremental Algorithm” Computational Linguistics 28 (1): 37-52.

van Deemter and Krahmer (IN PRESS). Graphs and Booleans: on the generation
of referring expressions. To appear in ‘Computing Meaning’, Volume 3, ‘Studies
in Linguistics and Philosophy’ series, Kluwer, Dordrecht.

Friedman-Hill, E. (2003). JESS - the Java Expert System Shell, Version 6.x,
Sandia National Laboratories.

Gardent, C. (2002). Generating minimal definite descriptions, Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, (ACL
2002), Philadelphia, USA.

Garey, M. and D. Johnson (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H.Freeman.

Gibbons, A. (1985). Algorithmic Graph Theory, Cambridge University Press,
Cambridge.

Horacek, H. (2004). On Referring to Sets of Objects Naturally. Proceedings of the
Third International Conference on Natural Language Generation (INLG-04).

Krahmer, E. S. van Erk and A. Verleg (2003). Graph-based Generation of
Referring Expressions, Computational Linguistics, 29(1): 53-72.

Krahmer, E. and M. Theune (2002). Efficient context-sensitive generation of
referring expressions, in: Information Sharing, K. van Deemter and R. Kibble
(eds.), CSLI Publications, CSLI, Stanford, 223-264.

Reiter, E. and R. Dale (2000). Building Natural language Generation Systems.
Cambridge University Press, Cambridge, UK.

Stone, M. (2000). On Identifying Sets, Proceedings of the First International
Conference on Natural Language Generation (INLG 2000), Mitzpe Ramon.

Varges, S. (2004). Overgenerating referring expressions involving relations, Pro-
ceedings of the Third International Conference on Natural Language Generation

(INLG-04).

13

