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Abstract This paper presents a Conceptual Graph (cg) framework to
the Generation of Referring Expressions (gre). Employing Conceptual
Graphs as the underlying formalism allows a new rigorous, semantically
rich, approach to gre: the intended referent is indenti�ed by a combina-
tion of facts that can be deduced in its presence but not if it would be
absent. Since cgs allow a substantial generalisation of the GRE problem,
we show how the resulting formalism can be used by a gre algorithm
that refers uniquely to objects in the scene.

1 Introduction

Generation of Referring Expressions (gre) is a key task in Natural Language
Generation (Reiter and Dale 2000). Essentially, gre models the human ability to
verbally identify objects from amongst a set of distractors: given an entity that
we want to refer to, how do we determine the content of a referring expression
that uniquely identi�es that intended referent?

In the classical approach, a gre generator takes as input (1) a knowledge
base (KB) of (usually atomic) facts concerning a set of domain objects, and (2)
a designated domain object, called the target. The task is to �nd some combi-
nation of facts that singles out the target from amongst all the distractors in
the domain. These facts should be true of the target and, if possible, false of
all distractors (in which case we speak of a distinguishing description). Once
expressed into words, the description should ideally be `natural' (i.e., similar to
human-generated descriptions), and e�ective (i.e., the target should be easy to
identify by a hearer). Many of the main problems in gre are summarized in Dale
and Reiter (1995). (See also Dale and Haddock 1991 for gre involving relations;
Van Deemter 2002 and Horacek 2004 for reference to sets and for the use of
negation and disjunction). Here, we focus on logical and computational aspects
of the problem, leaving empirical questions about naturalness and e�ectiveness,
as well as questions about the choice of words, aside.

Recently, a graph-based framework was proposed (Krahmer et al. 2003), in
which gre was formalised using labelled di-graphs. A two-place relation R be-
tween domain objects x and y was represented by an arc labelled R between
nodes x and y; a one-place predicate P true of x was represented by an loop-
ing arc (labelled P ) from x to x itself. By encoding both the description and
the KB in this same format (calling the �rst of these the description graph and



the second the scene graph), these authors described the gre problem in graph-
based terms using subgraph isomorphisms. This provides the ability to make use
of di�erent search strategies and weighting mechanisms when adding properties
to a description. Their approach is elegant and has the advantage of a visual
formalism for which e�cient algorithms are available, but it has a number of
drawbacks. Most of them stem from the fact that their graphs are not part of
an expressively rich overarching semantic framework that allows the KB to tap
into existing ontologies, and to perform automatic inference.

It is these shortcomings that we addressed in Croitoru and van Deemter
(2006), while maintaining all the other advantages of the approach of Krahmer
et al. (2003). The core of our proposal is to address gre using a Conceptual
Graph (gre) framework. cgs provide a simple approach that adds discrimina-
tory power. This emphasizes the important role the underlying representation
plays in the generation of referring expressions: if we want to emulate what peo-
ple do, then we not only need to design algorithms which mirror their behaviour,
but these algorithms have to operate over the same kind of data. Another in-
teresting quality of our approach is that the algorithm devised explicitly tracks
the focus of attention. Objects which are �closely related� (in the combinatorial
structure provided by the cg) to the most recent target object are taken to
be more salient than objects which are not in the current focus space. Concep-
tual Graphs are a visual, logic-based knowledge representation (KR) formalism.
They encode ontological (`T Box') knowledge in a structure called support. The
support consists of a number of taxonomies of the main concepts and relations
used to describe the world. The world is described using a bipartite graph in
which the two classes of the partition are the objects, and the relations respec-
tively. The cgs semantics translate information from the support in universally
quanti�ed formulae (e.g., `all cups are vessels'); information from the bipartite
graph is translated into the existential closure of the conjunction of formulae as-
sociated to the nodes (see section 3.2). A key element of cgs is the logical notion
of subsumption (as modelled by the notion of a projection), which will replace
the graph-theoretical notion of a subgraph isomorphism used by Krahmer et al.
(2003).

The main contribution of the present paper is to highlight that the cg frame-
work allows us to replace the gre-classical content determination approach by an
inferential approach: the target is now individualized by a logical formulae which
can be deduced from the information associated to the cg-scene, but which can
not be deduced from the information associated to the cg-scene without the
target. We believe it is important to draw attention to the deep role played by
inference in addressing gre in a cg framework, which provides a simple and
e�ective mechanism for handling a more realistic setting than those used by the
existing work in the �eld.

The aim of this paper is therefore to present a new and e�ective application
of cgs in the area of Natural Languages Processing (NLP). This reveals also,
some new interesting questions related to the combinatorial and algorithmic
properties of cgs. For example, we found in a natural way, that the �eccentricity�



of a concept node can be considered as its salience in the description provided
by the cg. This can be used by a cg layout tool in order to enhance the visual
quality of the picture, by placing �central concept nodes� in the middle of the
picture. Also, we arrived at the notion of �non-ambiguous description� provided
by a cg, that is a description in which no two concept nodes could be confused.
Recognizing such a property of a cg is obviously important for the cg models of
real world applications. This can be viewed as a certain discipline of modelling
in an area which is sometimes dominated by rhetorical metaphors.

2 Conceptual Graphs (cgs)

2.1 Syntax

Here we discuss the (simple) conceptual graph (cg) model and explain how it can
be used to formalise the information in a domain (or `scene') such as Figure 1.
In section 3 we show how the resulting cg-based representations can be used by
a gre algorithm that refers uniquely to objects in the scene.

The cg model (Sowa (1984)) is a logic-based KR formalism. Conceptual
Graphs make a distinction between ontological (background) knowledge and fac-
tual knowledge. The ontological knowledge is represented in the support, which
is encoded in hierarchies. The factual knowledge is represented by a labelled
bipartite graph whose nodes are taken from the support. The two classes of par-
titions consist of concept nodes and relation nodes. Essentially, a cg is composed
of a support (the concept / relation hierarchies), an ordered bipartite graph and
a labelling on this graph which allows connecting the graph nodes with the
support.

We consider here a simpli�ed version of a support S = (TC , TR, I), where:
(TC ,≤) is a �nite partially ordered set of concept types; (TR,≤) is a partially
ordered set of relation types, with a speci�ed arity; I is a set of individual
markers.
Formally (Chein and Mugnier (1992)), a (simple) cg is a triple cg= [S, G, λ],
where:

� S is a support;
� G = (VC , VR, E) is an ordered bipartite graph ; V = VC ∪VR is the node set

of G, VC is a �nite nonempty set of concept nodes, VR is a �nite set of relation
nodes; E is the set of edges {vr, vc} where vr ∈ VR and vc ∈ VC ; the edges
incident to each relation node are ordered and this ordering is represented by
a positive integer label attached to the edge; if the edge {vr, vc} is labelled
i in this ordering then vc is the i-neighbor of vr and is denoted by N i

G(vr);
� λ : V → S is a labelling function; if v ∈ VC then λ(v) = (typev, refv) where

typev ∈ TC and refv ∈ I ∪ {∗}; if r ∈ VR then λ(r) ∈ TR.

For simplicity we denote a conceptual graph cg= [S, G, λ] by G, keeping sup-
port and labelling implicit. The order on λ(v) preserves the (pair-wise extended)
order on TC (TR), considers I elements mutually incomparable, and ∗ ≥ i for



each i ∈ I. The fact that two concept labels with distinct individual markers
is in concordance with the unique name assumption, that is, there is an unique
name of naming a speci�c entity.

Consider the following kb described in Figure 1. The Krahmer et al. (2003)
associated scene digraph is illustrated in Figure 2 and the cg scene graph de-
scription is given in Figure 3.
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Figure 2. Krahmer et al. scene digraph

In Figure 3 the concept type hierarchy TC of the support is depicted on
the left. The factual information provided by Figure 1 is given by the labelled
bipartite graph on the right. There are two kinds of nodes: rectangle nodes
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Figure 3. A cg-style scene graph

representing concepts (objects) and oval nodes representing relations between
concepts. The former are called concept nodes and the second relation nodes.
The labels ri and vi outside rectangles and ovals are only used for discussing
the structure of the graph, they have no meaning. {v0, . . . , v7} are the concept
nodes and {r1, . . . , r7} are the relation nodes. Each edge of the graph links a
relation node to a concept node. The edges incident to a speci�c relation node
are ordered and this ordering is represented by a positive integer label attached
to the edge. For example, the two edges incident to the relation node r1 are
{r1, v0}, labelled 1 and {r1, v1}, labelled 2; we also say that v0 is neighbor 1 of
r1 and v1 is neighbor 2 of r1.

In the digraphs of Krahmer et al. (2003), relations with more than two places
are di�cult to handle, but cgs can represent these naturally, because relation
instances are rei�ed. Consider that x gives a car y to a person z, and a ring
u to v. Using cgs, this is modelled by considering two instances r1 and r2 of
giving, each of which has a labelled arc to its three arguments. We note also that
in the scene digraphs of Krahmer et al. (2003), object's attributes are encoded
using labelled loops, and this can conduct to unpleasant complications of for the
graphical representation. Using relation nodes of degree 1 is more expressive in
the cg representation.

The label of a concept node (inside the rectangle) has two components: a
concept type and either an individual marker or ∗, the generic marker. The
concept node designates an entity of the type indicated by the �rst component.
If the second component is ∗, this entity is arbitrary ; if it is an individual marker
then the entity is speci�c. Intuitively, by using labels, cgs have associated, by
de�nition, a "local" referential mechanism: each concept node refers to an entity
belonging to the subset of the universe established by the interpretation of its



type. In Figure 3 all concepts have generic markers and the nodes v0, v3 and v7

designate three arbitrary objects of type cup, v4 designates an arbitrary object
of type �oor, etc. For a relation node, the label inside the oval is a relation type
from TR. The arity of this relation type is equal to the number of vertices incident
to the relation node r (denoted by deg(r). Intuitively, this means that the objects
designated by its concept node neighbours are in the relation designated by the
label. In Figure 3 the relation node r2 asserts that the bowl designated by v1 is
on the table designated by v2.

Overall the conceptual graph in Figure 3 states that there is a �oor on which
there are a table, a cup and two bowls; on the table there is a a bowl and in this
bowl there is a cup.

2.2 Formal Semantics of CGs

Usually, cgs are provided with a logical semantics via the function Φ, which
associates to each cg a FOL formula (Sowa (1984)). If S is a support, a con-
stant is associated to each individual marker, a unary predicate to each con-
cept type and a n-ary predicate to each n-ary relation type. We assume that
the name for each constant or predicate is the same as the corresponding ele-
ment of the support. The partial orders speci�ed in S are translated in a set
of formulae Φ(S) by the following rules: if t1, t2 ∈ TC such that t1 ≤ t2, then
∀x(t2(x) → t1(x)) is added to Φ(S); if t1, t2 ∈ TR, have arity k and t1 ≤ t2, then
∀x1∀x2 . . . ∀xk(t2(x1, x2, . . . , xk) → t1(x1, x2, . . . , xk)) is added to Φ(S).

If cg= [S, G, λ] is a conceptual graph then a formula Φ(cg) is constructed
as follows. To each concept vertex v ∈ VC a term av and a formula φ(v) are
associated: if λ(v) = (typev, ∗) then av = xv (a logical variable) and if λ(v) =
(typev, iv), then av = iv (a logical constant); in both cases, φ(v) = typev(av).
To each relation vertex r ∈ VR, with λ(r) = typer and degG(r) = k, the formula
associated is φ(r) = typer(aN1

G
(r), . . . , aNk

G
(r)).

Φ(cg) is the existential closure of the conjunction of all formulas associated
with the vertices of the graph. That is, if VC(∗) = {vi1 , . . . , vip} is the set of all
concept vertices having generic markers, then Φ(cg)= ∃v1 . . . ∃vp(∧v∈VC∪VR

φ(v)).
If G is the graph in Figure 3, then
Φ(G) = ∃xv0∃xv1∃xv2∃xv3∃xv4∃xv5∃xv6∃xv7 [cup(xv0)∧ bowl(xv1)∧ table(xv2)∧
cup(xv3) ∧ floor(xv4) ∧ bowl(xv5) ∧ bowl(xv6) ∧ cup(xv7) ∧ isin(xv0 , xv1)∧
ison(xv1 , xv2)∧ ison(xv1 , xv2)∧ ison(xv3 , xv4)∧ ison(xv2 , xv4)∧ ison(xv5 , xv4)∧
ison(xv6 , xv4) ∧ isin(xv7 , xv6)].

If (G,λG) and (H, λH) are two cgs (de�ned on the same support S) then
G ≥ H (G subsumes H) if there is a projection from G to H. A projection is
a mapping π from the vertices set of G to the vertices set of H, which maps
concept vertices of G into concept vertices of H, relation vertices of G into
relation vertices of H, preserves adjacency (if the concept vertex v in V G

C is the
ith neighbour of relation vertex r ∈ V G

R then π(v) is the ith neighbour of π(r))
and furthermore λG(x) ≥ λH(π(x)) for each vertex x of G. A projection is a
morphism between the corresponding bipartite graphs with the property that



labels of images are decreased. Π(G,H) denotes the set of all projections from
G to H.

Informally G ≥ H means that if H holds then G holds too. This is mo-
tivated by the fact that the subsumption relation corresponds to deduction
for the fragment of �rst order logic (fol) associated to cgs. More precisely,
if G ≥ H then Φ(S), Φ(H) |= Φ(G) (soundness) (Sowa (1984)). Completeness (if
Φ(S), Φ(H) |= Φ(G) then G ≥ H) only holds if the graph H is in normal form,
i.e. if each individual marker appears at most once in concept node labels (Chein
and Mugnier (1992)). Using only cgs in normal form is a natural condition for
our gre purposes and this will be assumed implicitly in the following.

For the gre problem the following de�nitions are needed to rigorously iden-
tify a certain type of a subgraph. If G = (V G

C , V G
R , E) is an ordered bipar-

tite graph and A ⊆ V G
R , then the subgraph spanned by A in G is the graph

[A]G = (NG(A), A,E′) where NG(A) is the neighbour set of A in G, that is the
set of all concept vertices with at least one neighbour in A, and E′ is the set of
edges of G connecting vertices from A to vertices from NG(A). It is easy to see
that if G is a cg then the subgraph [A]G and the restriction of λG to its vertices
is a cg too, the spanned conceptual subgraph of G. Clearly [A]G ≥ G since the
identity is a trivial projection from [A]G to G.

3 cgs for Generation of Referring Expressions

3.1 Stating the problem

Let us see how the gre problem can be stated in terms of cgs.

De�nition 1. Let G be a cg and v0 be a concept node in G. We de�ne that a
cg H (on the same support S as G) uniquely refers to v0 in G if :

H ≥ G and H 6≥ G− v0.

Since projection is sound and complete with respect to Sowa's semantics Φ
for (normal) cgs, it follows that H uniquely refers to v0 in G if and only if
Φ(S), Φ(G) |= Φ(H) and Φ(S), Φ(G − v0) 6|= Φ(H). This intuitively means that
H uniquely refers to v0 in G if and only if the facts stated by H can be logically
deduced from the facts stated by scene G, but this is no longer the case if the
target v0 is removed from the scene.

It is easy to see that if H uniquely refers to v0 in G and H ′ is any subgraph
of H such that H ′ 6≥ G − v0, then H ′ also uniquely refers to v0 in G. Clearly,
in the gre problem we will be interested in obtaining only minimal cgs H that
uniquely refers to v0 in G.

On the other hand, let us note that if H uniquely refers to v0 in G, then
there is π a projection from H to G (since H ≥ G) and a concept node w in
H such that π(w) = v0 (otherwise, π is a projection from H to G− v0). Hence,
if π(H) is the image of H, then π(H) is a spanned subgraph of G namely,
[π(V H

R )]G, containing v0. Clearly, π(H) ≥ G (identity is an obvious projection)
and, furthermore, π(H) 6≥ G−v0 (if there is a projection π1 from π(H) to G−v0



then π1 ◦ π is a projection from H to G− v0). Therefore, we have obtained that
π(H) uniquely refers to v0 in G.

It follows that (analogous to Krahmer et al. 2003) in the gre problem we
can restrict only to referring graphs `part of' the scene graph. It is possible to
formulate gre using only the combinatorial structure cg G and the vertex v0.

De�nition 2. Let G be a cg and v0 be a concept node in G.
A v0-referring subgraph of G is the subgraph G′ = ({v0}, ∅, ∅) or any spanned
subgraph G′ = [A]G containing v0 (that is, A 6= ∅ and v0 ∈ NG(A)).
A v0-referring subgraph [A]G is called v0-distinguishing if [A]G 6≥ G− v0.

It is not di�cult to verify that a v0-referring subgraph [A]G is v0-distinguishing
if and only if v0 is a �xed point of each projection π from [A]G to G, that is
π(v0) = v0 ∀π ∈ Π([A]G, G).

The gre problem is now:

Instance: cg= [S, G, λ] a conceptual graph representation of the scene;
v0 a concept vertex of G.
Output: A ⊆ VR such that [A]G is a v0-distinguishing subgraph in cg,
or the answer that there is no v0-distinguishing subgraph in cg.

Example. Consider the scene described in Figure 3. A = ∅ is not a solu-
tion for the gre instance (cg, {v0}) since G1 = ({v0}, ∅, ∅) can be projected
to ({v7}, ∅, ∅) or ({v3}, ∅, ∅). However, A = {r1, r2} is a valid output since
G1 = [{r1, r2}]G is a v0-distinguishing subgraph. Note that the description of the
entity represented by v0 in G1 has the intuitive meaning the cup in the bowl on
the table, which does individuates this cup. In our inferential approach this holds
since Φ(G1) = ∃xv0∃xv1∃xv2(cup(xv0)∧ bowl(xv1)∧ table(xv2)∧ isin(xv0 , xv1)∧
ison(xv1 , xv2)) can be deduced from Φ(G) but not from Φ(G− v0).

If G1 = [A]G is a v0-distinguishing subgraph in cg, and if we denote by A′ the
relation nodes set of the connected component of G1 containing v0, then [A′]G
is a v0-distinguishing subgraph in cg too. Hence, by the minimality assumption,
we consider only connected v0-distinguishing subgraphs. On the other hand,
intuitively the existence of a v0-distinguishing subgraph is assured only if the cg
description of the scene has no ambiguities.

Theorem 1. Let (cg, {v0}) be a gre instance. If [A]G is v0-distinguishing then
[A′]G is v0-distinguishing for each A′ ⊆ V G

R such that A ⊆ A′.
Proof. Indeed, since A ⊆ A′ and v0 ∈ NG(A) it follows that v0 ∈ NG(A′),

therefore [A′]G is v0-referring. If [A′]G is not v0-distinguishing then there is π a
projection from [A′]G to G such that π(v0) 6= v0. But then, πA, the restriction
of π to the subgraph [A]G, has the same property, πA(v0) 6= v0, contradicting
the hypothesis that [A]G is v0-distinguishing.
In particular, taking A′ = VR, we obtain:

Corollary 1. There is a v0-distinguishing subgraph in G i� G 6≥ G− v0.
Proof. If there is [A]G a v0-distinguishing subgraph in G, then (since A ⊆ VR

and [VR]G = G), by the above theorem, G is v0-distinguishing and therefore



G 6≥ G−v0. Conversely, if G 6≥ G−v0 then it follows that G is a v0-distinguishing
subgraph.

A concept vertex v0 which does not have a v0-distinguishing subgraph is
called an undistinguishable concept vertex in G. We say that a cg provides
an well-de�ned scene representation if it contains no undistinguishable vertices.
Testing if a given gre instance de�nes such an ambiguous description is, by the
above corollary, decidable.

Let v0 ∈ VC be an arbitrary concept vertex. The set of concept vertices of
G di�erent from v0, in which v0 could be projected, is (by projection de�nition)
contained in the set

Distractors0(v0) = {w|w ∈ VC − {v0}, λ(v0) ≥ λ(w)}.
Clearly, if Distractors0(v0) = ∅ then v0 is implicitly distinguished by its label
(type + referent), that is ({v0}, ∅, ∅) is a v0-distinguishing subgraph.

Therefore we are interested in the existence of a v0-distinguishing subgraph
for concept vertices v0 with Distractors0(v0) 6= ∅. In this case, if NG(v0) = ∅,
clearly there is no v0-distinguishing subgraph (the connected component con-
taining the vertex v0 of any spanned subgraph of G is the isolated vertex v0).
Hence we assume NG(v0) 6= ∅.

3.2 Complexity
Some of the main complexity results in GRE are presented in Dale and Reiter
(1995). Among other things, these authors argue that the problem of �nding a
uniquely referring description that contains the minimum number of properties
(henceforth, a Shortest Description) is NP-complete, although other versions of
GRE can be solved in polynomial or even linear time. As we have argued, CG
allows a substantial generalisation of the GRE problem. We proved in Croitoru
and van Deemter (2006) that this generalisation does not a�ect the theoretical
complexity of �nding Shortest Descriptions. More precisely, we proved that the
decision problem associated with minimum cover (Garey and Johnson (1979))
can be polynomially reduced to the problem of �nding a concise distinguishing
subgraph. If this later problem is

Shortest Description
Instance: G a cg such that dG(r) = 1, for each relation node r ∈ VR;

a vertex v0 ∈ VC ; s a positive integer.
Question: Is there a v0-distinguishing subgraph [A]G such that |A| ≤ s ?

then we proved (Croitoru and van Deemter (2006)):

Theorem 2. Shortest Description is NP-complete.

Note that in the above problem we considered the simple case when all re-
lation vertices r ∈ V G

R unary. In other words, G is a disjoint union of stars
centered in each concept vertex. Intuitively, this means that each object des-
ignated by a concept vertex in the scene represented by G is characterized by



its label (type and reference) and by some other possible attributes (properties)
and each r ∈ V G

R designates an unary relation. This is the classical framework
of the gre problem, enhanced with the consideration of basic object properties
(the types) and the existence of a hierarchy between attributes.

In this particular case, if NG(v0) = {r1, . . . , rp} (p ≥ 1) (the properties of the
concept designated by v0) then for each ri ∈ NG(v0) we can consider:
Xi := {w|w ∈ Distractors0(v0) such that there is no r ∈ NG(w) with λ(ri) ≥ λ(r)}.

In words, Xi is the set of v0-distractors which will be removed if ri would be
included as a single relation vertex of a v0-distinguishing subgraph (since there
is no r ∈ NG(w) such that λ(ri) ≥ λ(r) it follows that there is no projection π
of the subgraph [ri]G to G such that π(v0) = w).

The proof of the above theorem is based on the following lemma which we
have proved in Croitoru and van Deemter (2006):

Lemma 1. There is a v0-distinguishing subgraph in G i�:

∪p
i=1Xi = Distractors0(v0).

To summarize, if all relation vertices have degree 1, deciding if a vertex v0

admits a v0-distinguishing subgraph can be done in polynomial time.
However, the above lemma shows that [A]G is a v0-distinguishing subgraph if and
only if A ⊆ NG(v0) and ∪ri∈AXi = Distractors0(v0). Therefore the problem of
�nding a v0-distinguishing subgraph with aminimum number of vertices (e.g.,
Dale and Reiter 1995) is reduced to the problem of �nding a minimum cover of
the set Distractors0(v0) with elements from X1, . . . , Xp, which is an NP -hard
problem.

3.3 A simple GRE algorithm
In the general case, each object in the scene represented by G is characterized
by its label (type and reference), by some other possible attributes (properties)
and also by its relations with other objects, expressed via relation nodes of arity
≥ 2. In this case, if v0 an arbitrary concept node, it is possible to have vertices in
Distractors0(v0) which cannot be distinguished from v0 using individual relation
neighbors but which could be removed by collective relation neighbors. Let us
consider the scene described in Figure 4 :

Note that relation labels are assumed to be incomparable. Clearly, NG(v0) =
{r1, r2} and Distractors0(v0) = {v2, v4}. The vertex v4 can be removed by r1

(v4 has no relation neighbor with a label at least know) and by r2 (despite of
the existence of a relation neighbor r5 labelled is near, v4 is the second neighbor
of r5; v0 is the �rst neighbor of r2). The vertex v2 cannot be removed by r1

([r1]G ≥ [r3]G)) and by r2([r2]G ≥ [r4]G), but {r1, r2} destroys v2 ( there is no
projection of [{r1, r2}]G mapping v0 to v2 and in the same time mapping v1 to
a common neighbor of r3 and r4).

This example shows a way to obtain an algorithm for constructing a v0-
distinguishing subgraph in general.
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Figure 4. Scene Illustration

For an arbitrary concept vertex v0, let us denote N0(v0) = ∅, N1(v0) := NG(v0)
and for i ≥ 2, N i(v0) = NG(NG(N i−1(v0))). Clearly, since G is �nite, there
is k ≥ 1 such that N i(v0) = Nk(v0) for each i ≥ k (Nk(v0) is the relation
nodes set of the connected component of G which contains v0). This parameter
is called the eccentricity of v0 and is denoted ecc(v0). The Figure 5 illustrates
the construction of this sequence of relation nodes.

The basic idea is to test successively if the above constructed relation neighbors
sets of v0 destroy the set Distractors0(v0).

We can consider, inductively, distractors of higher order for a vertex v0. We
will use the following notation: if G is a cg containing a vertex v and H is a cg
containing a vertex w then G ≥v→w H means that there is a projection π from
G to H such that π(v) = w. Now, Distractorsi(v0) are de�ned by:

Distractors0(v0) = {w|w ∈ VC −{v0}, λ(v0) ≥ λ(w)}, and, for each i = 1, ecc(v0),
Distractorsi(v0) = {w|w ∈ Distractorsi−1(v0), [N i(v0)]G ≥v0→w [N i(w)]G}.

Note that Distractors0(v0) ⊇ Distractors1(v0) ⊇ . . . ⊇ Distractorsecc(v0)(v0).
However, only the set Distractors0(v0) can be computed in polynomial time.
The set Distractorsi(v0), i ≥ 1, contains the vertices w from the previous set,
Distractorsi−1(v0), which cannot be destroyed by N i(v0) and this means that
we need to test if [N i(v0)]G ≥ [N i(w)]G. But the last test is, in general, non-
polynomial.
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Figure 5. Successive Relation Neighbors Sets

Theorem 3. Let (G, {v0}) be a GRE instance, and let i0 be the �rst i ∈
{0, . . . , ecc(v0)} such that Distractorsi(v0) = ∅. If i0 exists then [N i(v0)]G is
a v0-distinguishing subgraph, otherwise v0 is an undistinguishing vertex.

Proof. We can suppose that G is connected. Therefore [Necc(v0)(v0)]G = G.
Also, if Distractors0(v0) = ∅ then the theorem holds trivially. Inductively, we
can prove that

(∗) If Distractorsi(v0) 6= ∅, then [N i(v0)]G is not a v0-distinguishing subgraph.

Using the theorem 1 we obtain from (∗) that there is no v0-distinguishing
subgraphs in [N i(v0)]G. Therefore, if Distractorsecc(v0)(v0) 6= ∅ then there is no
v0-distinguishing subgraphs in [Necc(v0)(v0)]G = G.
It follows also from (∗) that for each w ∈ Distractorsi(v0) there is a projec-
tion π ∈ Π[Ni(v0)]G→G such that π(v) = w. If i0 is the �rst index i such that
Distractorsi(v0) = ∅, then, clearly, [N i0(v0)]G is a v0-distinguishing subgraph.

Therefore, the theorem is completely proved if we show that (∗) holds. But
this follows easily from the de�nition of the sets Distractorsi(v0), using an
inductive argument.

The above theorem basically de�nes a breath �rst search algorithm for �nding
a v0-distinguishing subgraph which can be described as follows.



Input: CG = [S, G, λ] a cg representation of the scene; v0 a concept vertex of G.
Output: A ⊆ VR such that [A]G is a v0-distinguishing subgraph in G,

or the answer that there is no v0-distinguishing subgraph in G.
{ D ← ∅

for each w ∈ V G
C − {v0} do

if λ(v0) ≥ λ(w) then D ← D ∪ {w}
N ← NG(v0); finished ← false
while D 6= ∅ and not finished do

{ for each w ∈ D do
if not [N ]G ≥v0→w G then D ← D − {w}

if N = NG(NG(N)) then finished ← true
else N ← NG(NG(N))

}
if D = ∅ then return N

else return there is no v0-distinguishing subgraph in G.
}

4 Conclusions
This paper presents a new and useful application of cgs in the area of Natural
Languages Processing (NLP). Employing Conceptual Graphs as the underlying
formalism to the Generation of Referring Expressions (gre) allows a new, rigor-
ous and semantically rich approach to gre: the intended referent is indenti�ed
by a combination of facts that can be deduced in its presence but not if it would
be absent. More precisely, using cg to formalise gre means that we bene�t from:
� The existence of a support. cgs make possible the systematic use of a set

of �ontological commitments� for the knowledge base. A support, of course,
can be shared between many kbs.

� A properly-de�ned formal semantics, re�ecting the precise meaning of the
graphs and their support, and including a general treatment of n-place rela-
tions.

� Projection as an inferential mechanism. Projection replaces the purely graph-
theoretical notion of a subgraph isomorphism by a proper logical concept
(since projection is sound and complete with respect to subsumption). Op-
timized algorithms (for example Croitoru and Compatangelo (2004)) can be
used to improve the new gre algorithm developed in the present paper.
At the same time, applying conceptual graphs to address the gre problem

raises novel interesting questions related to the combinatorial and algorithmic
properties of cgs:
� The �eccentricity� of a concept node which can be used by a cg layout tool

in order to enhance the visual quality of the picture.
� �Non-ambiguous descriptions�, descriptions in which no two concept nodes

could be confused, is obviously important for the cg models of real world
applications.



To conclude, the deep role played by inference in addressing gre in a cg
framework provides a simple and e�ective mechanism to model the way humans
refer to objects in a rich inferential setting which has never been used by existing
work in the �eld.
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