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It is often desirable that referring expressions be chosen in such a way that their referents are easy

to identify. This paper focuses on referring expressions in hierarchically structured domains,

exploring the hypothesis that referring expressions can be improved by including logically

redundant information in them if this leads to a significant reduction in the amount of search

that is needed to identify the referent. Generation algorithms are presented that implement this

idea by including logically redundant information into the generated expression, in certain well-

circumscribed situations. To test our hypotheses, and to assess the performance of our algorithms,

two controlled experiments with human subjects were conducted. The first experiment confirms

that human judges have a preference for logically redundant expressions in the cases where our

model predicts this to be the case. The second experiment suggests that readers benefit from the

kind of logical redundancy that our algorithms produce, as measured in terms of the effort needed

to identify the referent of the expression.

1. Introduction

Common sense suggests that speakers and writers who want to get their message
across should make their utterances easy to understand. Broadly speaking, this view
is confirmed by empirical research (Deutsch 1976, Mangold 1986, Levelt 1989, Sonnen-
schein 1982, 1984, Clark 1992, Cremers 1996, Arts 2004). The present paper will examine
its consequences for the generation of referring expressions (GRE). In doing this, we
distinguish between two aspects of the ‘understanding’ of a referring expression, which
we shall denote by the terms interpretation and resolution. We take interpretation to
be the process whereby a hearer/reader determines the meaning or logical form of
the referring expression; we take resolution to be the identification of the referent of
the expression once its meaning has been determined. It is resolution that will take
centerstage in our investigation.
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Difficulty of resolution and interpretation do not always go hand in hand. Consider
sentences (1a)-(1c), uttered somewhere in Brighton but not on Lewes Road. The de-
scription in (1a) is longer (and might take more time to read and interpret) than (1b), but
the additional material in (1a) makes resolution easier once interpretation is successfully
completed.

(1a) 968 Lewes Road, Moulsecoomb area
(1b) 968 Lewes Road
(1c) number 968

The first two of these descriptions refer uniquely. As for the third one, Lewes Road
is a long street. Supposing that other streets in Brighton do not have numbers above
900, then even (1c) is a unique description – but a pretty useless one, since it does not
help you to find the house unless your knowledge of Brighton is exceptional. We will
explore how an NLG program should make use of logically redundant properties so
as to simplify resolution (i.e., the identification of the referent). When we write about
identifying or ‘finding’ the referent of a referring expression, we mean this in the sense
of determining which object is the intended referent. This conceptual goal may or may
not require the hearer to make a physical effort, for example by turning the pages of a
book, or more dramatically by walking and waiting for traffic lights.

The fact that referring expressions tend to contain logically redundant information has
been observed in many empirical studies. Levelt (1989), for example, mentions the need
for redundancy in situations of ‘degraded communication’ (e.g., background noise);
and even in normal situations, redundant nondiscriminating information can help the
addressee identify the referent (Deutsch 1976, Mangold 1986, Sonnenschein 1982, 1984,
Arts 2004). In Levelt’s words, psycholinguistic experiments show that

“Listeners apparently create a ‘gestalt’ of the object for which they have to search. It is
harder to search for ‘something red’ than for ‘a big red bird’, even if the colour would
be sufficiently discriminating. Information about the kind of object to be looked for (e.g.,
a bird) is especially helpful for constructing such a gestalt." (Levelt 1989, p.131.)

Although early GRE algorithms have often followed the Gricean maxim ‘be brief’ (Grice
1975), by minimising the number of properties in a generated description, Dale and
Reiter (1995) proposed an algorithm that allows certain redundancies, for example by
guaranteeing that each generated description expresses the ontological ‘type’ of the
referent, in the form of a noun, a move that addresses Levelt’s claim to some extent.1

In corpus-based studies, it has been shown that logically redundant properties tend
to be included when their inclusion fulfils one of a number of pragmatic functions,
such as to indicate that a property is of particular importance to the speaker (i.e., it
constitutes one of her reasons for being interested in the referent) or to highlight the
speaker’s awareness that the referent has the property in question (Jordan 2000, 2002).
Implementations of such findings in NLG are not difficult to envisage.

1 Dale and Reiter (1995, section 5) also mention the use of ‘navigational’ (or ‘attention-directing’)
information in referring expressions, which they distinguish from ‘discrimination information’, and
whose function appears to be to move the attention of the reader/hearer towards an object. The concept
is not defined precisely and it is not clear how navigational information should be used in GRE.
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The present paper takes this reader-oriented perspective on the redundancy of referring
expressions a step further, by asking how a generator can use logically redundant
information to reduce the search space within which a reader has to ‘find’ a referent;
this will be specifically useful when referents need to be found in situations where the
extensions of some of the properties are not known to the reader/hearer in advance (cf.,
Edmonds 1994 for a related set of problems) and where some effort may be needed to
identify the referent. By focussing on the information needs of the hearer/reader, our
work, a further development of Paraboni and van Deemter (2002) that also takes the
results of Paraboni et al. (2006) into account, addresses an issue that lies close to the
heart of NLG as a practical enterprise, whose purpose is, after all, to make information
accessible to people. These issues originally came to the fore while studying references
to parts of documents (Paraboni 2000, 2003, Paraboni and van Deemter 2002, 2002a) but
their relevance extends to many other situations. Our findings will also shed light on
the egocentricity debate among psycholinguists about the extent to which speakers take
hearer’s knowledge into account when they speak (Keysar et al. 2003). Throughout the
paper, we shall focus on issues of Content Determination (as opposed to, for example
Lexical Choice), and on the situations in which individuals are first mentioned (as
opposed to ones in which linguistic context allows them to be shortened, e.g., Krahmer
and Theune 2002, Siddharthan and Copestake 2004).

2. Ease of resolution in the Incremental Algorithm

Generation of Referring Expressions (GRE) is a key task of NLG systems (e.g., Reiter and
Dale 2000, section 5.4). An important aspect of GRE is to find combinations of properties
that allow the generator to refer uniquely to an entity, called the target. Crucially, GRE

algorithms only use properties whose denotations are part of the common knowledge of
writer and reader.2 These algorithms are typically designed in such a way that generation
is performed quickly (e.g., their worst-case running time tends to be linear, Dale and
Reiter 1995, van Deemter 2002) but the processing effort of the reader is not taken into
account. Some algorithms do make a point of generating descriptions that are as brief
as possible (Dale 1989), and this can be argued to make interpretation easier. As we have
seen, however, in relation to example (1a-c), brevity can make resolution difficult.

For concreteness, let us focus on one of the best known algorithms in this area. The
Incremental Algorithm (Dale and Reiter 1995) starts by arranging attributes in a list,
after which they are considered one by one, to see if any of their values contributes
something to the description, by removing ‘distractors’ (i.e., objects other than the
referent); if an attribute (e.g., COLOUR) can contribute something then a suitable value
(e.g., RED) for this attribute is selected as a part of the description. This is repeated
incrementally until the logical conjunction of all selected attribute/value combinations
results in a unique identification of the referent. There is no backtracking, and this is
what keeps the complexity of the algorithm linear; it is also what causes the algorithm
to sometimes express a property P even when properties that are added later make P
logically redundant.

2 A good example of a description failing this requirement occurs in ‘Get off one stop before I do’, in an
exchange between two people who have just met, as a description of where the hearer should get off the
bus. (Appelt 1985, cited in Dale and Reiter 1995).
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Suppose a referring expression identifies its referent uniquely. Then at least two things
can stand in the way of finding its referent: the ‘difficulty’ of the individual properties
used in the description (i.e., the fact that it may be difficult to ascertain which objects
have the property in question, Horacek 2005), or the size and structure of the search
space. To exemplify the first factor, suppose you are queuing up for a concert and want
to explain to a friend that a girl further ahead in the queue has his ticket. Colour is
an attribute that speakers like to use, even if it leads to logical redundancy (Pechmann
1989). This might be done by describing the referent as ‘The girl in a yellow dress’, or
as ‘The girl with green eyes’, for example. But arguably, the first property contributes
more towards your friend’s search, since the colour of a person’s eyes may not leap out
at him from afar. In the Incremental Algorithm, the fact that DRESS COLOUR is more
useful than EYE COLOUR could be tackled by letting it precede EYE COLOUR in the list
of attributes. As a consequence, EYE COLOUR would only be considered if the referent
cannot be identified uniquely without using a combination of more preferred attributes,
including DRESS COLOUR. Arguably, this is exactly as it should be, and it shows much
of what is good about the Incremental Algorithm. It is not so obvious, however, how
the algorithm should deal with the second of the two possible obstacles to resolution:
the size and structure of the domain.

3. Problems for resolution

In this section we shall introduce a class of domains (section 2.1) and a class of problems
for resolution that can arise when objects in these domains are identified using a distin-
guishing description (section 2.2). Section 3 will relate these problems to a simple model
of the resolution process and propose a remedy, which consists of generating logically
redundant descriptions (in two different ways). Sections 4 and 5 are putting our ideas
to the test: first, by investigating what kind of description is preferred by subjects who
are given the choice (Section 4); then, more elaborately, by investigating the effect of
redundant descriptions on readers (Section 5).

3.1 Hierarchical domains

Existing work on GRE tends to focus on fairly simple domains, dominated by one-
place properties. When relations (i.e., two-place properties) are taken into account at
all (e.g., Dale and Haddock 1991, Krahmer and Theune 2002), the motivating examples
are kept so small that it is reasonable to assume that speaker and hearer know all the
relevant facts in advance. Consequently, search is not much of an issue (i.e., resolution
is easy): the hearer can identify the referent by simply intersecting the denotations of
the properties in the description, for example intersecting the set of girls with the set of
individuals who wear a yellow dress (both in the domain). While such simplifications
permit the study of many aspects of reference, other aspects come to the fore when
larger, and subtly structured, domains are considered.

Interesting questions arise, for example, when a large domain is hierarchically ordered.
For the purpose of this paper, we consider a domain to be hierarchically ordered if its
inhabitants can be structured like a tree in which everything that belongs to a given
node n belongs to at most one of n’s children, while everything that belongs to one of
n’s children belongs to n. Examples include countries divided into provinces which, in
turn, may be divided into regions, etc.; years into months then into weeks and then into
days; documents into chapters then sections then subsections; buildings into floors then
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rooms. Clearly, hierarchies are among our favourite ways of structuring the world.3

A crucial question, in all such cases, is what knowledge is shared between speaker
and hearer at utterance time. Later on (most explicitly in section 5), we shall focus on
more realistic situations but, to get the idea, it will be useful to think about the extreme
case where, before the start of resolution, (i.e., before consulting the ‘knowledge in the
world’, as opposed to the hearer’s ‘knowledge in the head’, Norman 1988) the hearer
knows nothing about the domain. When the utterance is made, the hearer’s blindfold is
removed, so to speak, and resolution can start. No similar assumption about the speaker
is made: we assume that the speaker knows everything about the domain, and that he
knows that the hearer can achieve the same knowledge. Many of our examples will
be drawn from a simple model of a University campus, structured into buildings and
rooms; the intended referent will often be a library located in one of the rooms. The
location of the library is not known to the hearer, but it is known to the speaker.

Each domain entity r will be associated with a TYPE (e.g., the type ‘room’), and with
some additional attributes such as its ROOM NUMBER or NAME, and we will assume
that it is always possible to distinguish r from its siblings in the tree structure by
using one or more of these properties. (For example, ‘ROOM NUMBER=120’ identifies
a room uniquely within a given building; ‘BUILDINGNAME= Watts’ identifies a building
within the university.) This is a useful assumption, since without it, the existence of a
distinguishing description cannot be guaranteed.

The kinds of referring expression that we are interested in (see section 3 for motivation)

(d)

   library                                         

Watts building                                                        Cockcroft building

  room100       ...       room120     ...        room140  room100       ...       room110     ...        room120   

University of Brighton

Figure 1
A hierarchically structured domain. d is where the reference is uttered.

take the form of a list

L = 〈(x1, P1), (x2, P2)...(xn, Pn)〉,

where x1 = r is the referent of the referring expression and, for every j > 1, xj is an
ancestor (not necessarily the parent) of xj−1 in the domain D. For every j, Pj is a set of
properties that jointly identify xj within xj+1 or, if j = n, within the whole domain. The
reference ’the library in room 120 of Cockcroft building’, for example, is modelled as

3 If everything that belongs to a given node n belong to exactly one of n’s children, then nodes can be
thought of as being partitioned by its children. Note that this is not always the case. Not everything on a
given floor of a building, for example, has to be in a room. (The corridors are not.)
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L = 〈(r, {type = library}), (x2, {type = room, roomnumber = 120}), (x3, {type =
building, buildingname = Cockcroft})〉

3.2 Obstacles for resolution

We have argued that generating a uniquely referring expression is not always enough,
because such an expression can leave the hearer with an unnecessarily large search
space. But the issue is an even starker one, especially – as we shall soon see – when
it is taken into account that references in hierarchically structured domains can make
use of the position of the speaker and hearer in the domain. (For simplicity, we assume
that these two locations coincide.)

Let us start with some informal observations, to be corroborated in section 3. Suppose
a hierarchically-ordered domain D contains only one entity whose TYPE is LIBRARY.
Consider the following noun phrases, uttered in the position marked by d in Figure
1. (The first three have the same intended referent.)

(2a) the library, in room 120 in the Cockcroft building
(2b) the library, in room 120
(2c) the library
(2d) room 140

Utterances like (2a) and (2b) make use of the hierarchical structure of the domain. 4

We focus on the search for xn (i.e., the highest hierarchical level referred to in the
description) because, under the assumptions that were just made (in particular the fact
that xj be identified uniquely in xj+1 by the properties Pj) this is the only place where
problems can be expected (since no parent node is available).

Even though each of (2a)-(2d) succeeds in characterising their intended referent
uniquely, some of these descriptions can be problematic for the hearer. One type of
problem occurs in (2d). The expression is logically sufficient (i.e., there is only one
room labelled ’140’ in the entire University). But, intuitively speaking, the expression
creates an expectation that the referent may be found nearby, within the Watts building
whereas, in fact, a match can only be found in another building. In a case like this,
we will speak of Lack of Orientation (LO). Even more confusion might occur if another
library was added to our example, for instance in Watts 110, while the intended referent
was the other library (i.e., in room 120 Cockcroft). In this case, (2c) would misfire, of
course. The expression (2b), however, would succeed, by mutually using two parts of
the description (‘the library’ and ‘room 120’) to identify another: there are two libraries,
and two rooms numbered 120, but there is only one pair (a, b) such that a is a library and
b is a room numbered 120, while a is located in b. Such cases of mutual identification5 are
unproblematic in small, transparent, domains where search is not an issue, but in large
hierarchical domains, they are awkward (see Conclusion section). For, like (2d), (2b)

4 Recall that we focus on Content Determination, bypassing issues to do with lexical choice, linguistic
realisation, and so on. For example, we shall not worry whether it is better to say (i) the library, in room
120, (ii) the library in room 120 (without a comma), or (iii) the library (room 120). The difference is not trivial,
since (ii), for example, might be viewed as having the unwanted implicature that there is more than one
library in the Watts building. (Robert Dale, p.c.)

5 A well known example is the description ‘the bowl on the table’, in a domain that contains several tables
and several bowls, but only one bowl on a table (Dale and Haddock 1991).
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would force a reader to search through an unnecessarily large part of the domain; worse
even, the search ‘path’ that the reader is likely to follow leads via an obstacle (namely
room 120 Watts) that matches a part of the description, while not being the intended
referent of the relevant part of the description (i.e., room 120 Cockcroft). Confusion
could easily result. For even if the reader eventually finds the library, she has no simple
way of knowing whether it is the right one. (Perhaps a library in Watts 120 has been
overlooked.) In cases like this, we speak of a Dead End (DE).

Suppose the domain D is represented as a finite tree whose nodes have attributes
associated with them, one of which is the TYPE attribute. As before, we shall assume
that the attributes and values suffice to identify every node within its parent node.
Before defining LO and DE more precisely, we describe the related notions of SCOPE

and SCOPEGROUP, and the notion of a search path. We write x ∈ D to say that x is a node
in the tree D; if A is an attribute applicable to x then A(x) denotes the value of A for x.

Scope: Suppose x ∈ D, and A1, .., An are attributes associated with x. Then
SCOPE(x, {A1, ..An}) is the largest subtree S of D such that x ∈ S while,
for every y, z ∈ S, the conjunction A1(y) = A1(z) &...& An(y) = An(z)
implies y = z.

SCOPE(x, {A1, ..An}) is the largest subtree of D in which the values for the attributes A1,
..An jointly succeed in pinning down the referent. In practise, we shall usually focus on
situations where n = 1, in which case we shall write SCOPE(x,A1), omitting brackets. In
our University domain, let x be room 140 of Cockcroft, then SCOPE(x, ROOM NUMBER)
is the subtree rooted in Cockcroft, since within Cockcroft, all room numbers are unique,
whereas at the level of the entire university (the next level up), this is not the case (even
though the room number 140 itself happens to be unique at that level).

The notion of SCOPE gives rise to the notion of SCOPEGROUP in a straightforward way.
Assuming, once again, that x ∈ D, and letting U stand for a set of attributes associated
with x, we define:

SCOPEGROUP(x,U) = {y ∈ D | y ∈ SCOPE(x,U) & TYPE(x) = TYPE(y)}.

Thus, SCOPEGROUP (x, {A1, ..An}) is the set of those elements of SCOPE(x, {A1, ..An})
that are of the same TYPE as x. Again, we shall focus on cases where n = 1, and omit
brackets. Thus, in the example domain, SCOPEGROUP(x,ROOM NUMBER), where x is
any room in Cockcroft, is the set of all the rooms in Cockcroft. TYPE is kept constant in
the definition of SCOPEGROUP because it tends to be the only non-structural attribute
that is used to identify document parts (i.e., the only attribute that is not intended for
designating a part of the document tree). 6 Non-structural attributes will be assumed to
be unproblematic, operating like a filter on the set of possible referents. For example,
a reader of the description ‘the library in room 110’ will only be looking for libraries
(although they might be looking for them in the wrong building).

We are now in a position to define DE and LO more precisely, relative to a search
path. A search path is a series of steps in the search for a referent, representing visits

6 For example, we have seldom found descriptions like ‘the section containing tables’, ‘the italicised section’
in the PILs corpus (ABPI 1997).
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to nodes in the domain tree D. The path will be modelled by an ordered list of vis-
ited nodes: O = 〈n1, n2, ..nm〉. The node n1 is visited first, then n2, and so on, until
either the referent is found (success) or the reader gives up (failure). As before, let
L = 〈(x1, P1), (x2, P2)...(xn, Pn)〉 model the semantic structure of the description, in
which xn is the entity of highest hierarchical level referred to in L. Furthermore, let
A1,...,Aj be the set of all attributes in Pn. Then we predict problems for resolution
to occur if some y occurs prior to xn in O, for which TYPE(xn) = TYPE(y) and y 6∈
SCOPEGROUP(xn, A1, ..Aj). Calling such y an obstacle, there are two types of obsta-
cle: the obstacles for which all the properties in Pn are true (these are perhaps the
worst kind, because they can be mistaken for the intended referent), and the ones
for which this is not the case. If only obstacles of the latter kind arise then we will
speak of Lack of Orientation (LO). If there is at least one obstacle of the former, more
serious kind, we will speak of Dead End (DE). For example, in the case of the DE
example (2b) (‘the library in room 120’), the description itself can be modelled as
the list L = 〈(r, {type = library}), (x2, {type = room, roomnumber = 120})〉, where Pn

is the property ‘room number=120’ and xn is the room where the library is. Suppose
that the search path for xn corresponds to the following sequence (because referents are
always found in leaf nodes, other nodes appear in brackets):

O = 〈Watts100, (Watts, )Watts110, (Watts, )Watts120, (Watts, )(University, )
(Cockcroft, )Cockcroft100, (Cockcroft, )Cockcroft120〉.

Part of this sequence is the obstacle y = Watts 120, which is of the same TYPE as xn (i.e.,
both are rooms), and which does not belong to SCOPEGROUP(xn, ROOM NUMBER) (i.e.,
it does not belong to the Cockcroft building).

Since the property Pn (ROOM NUMBER=120) is true of y, this constitutes a case of DE.
If the room Watts 120 is removed from the domain, there no longer exists an obstacle
of the most serious kind (since there is only one room whose room number is 120), but
rooms 100 and 110 in the Watts building are obstacles of the less serious kind, making
this an example of LO.

It seems likely that Dead Ends and Lack of Orientation can disrupt search in sufficiently
large or complex domain structures. In principle, DE and LO could result even in
the most unlikely regions of the domain. Suppose ’the cup on the table’ is uttered
in a room d, which contains the intended referent. Now suppose (rather perversely
perhaps) the hearer started searching in another room, say the kitchen, before looking
at the nearest table (in d). If the kitchen happens to contain a table as well, and this
table does not support any cups, DE would result. Search, however, seems unlikely
to proceed in this way. To make testable predictions, we will make some assumptions
concerning the way in which referring expressions are resolved by hearers. To explain
what these assumptions are, let us return to the examples in section 2, repeated here for
convenience.

(2a) the library in room 120 in the Cockcroft building
(2b) the library in room 120
(2c) the library
(2d) room 140

We assume that these sentences are uttered in the University, say at the location d, and
that d determines the starting point of the search for a referent. Henceforth the starting
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point s will be assumed to be the parent node of d. The intuition behind this assumption
is simple: when searching, start looking nearby.

It will often be useful to assume that resolution adheres to a principle that we will call
Ancestral Search. In formulating this principle, we will use d′ as a name for the referring
expression (which, as we know, takes place at location d); we will use Ref(d′) as short
for the intended referent of d′.

Ancestral Search: First, search for Ref(d′) in the subtree dominated by the starting
point s. If Ref(d′) is not found there then search for Ref(d′) in the subtree dominated by
the parent of s, which is called s′. If Ref(d′) is not found there then move up to the
parent s′′ of s′,.., etc., until the root is reached. [If, at this point, Ref(d′) is still not found,
search fails.]

Ancestral Search (AS) says that the hearer of a referring expression searches exhaus-
tively through the current search space (e.g., the building in which the expression is
uttered, or the current document section containing the expression) before inspecting a
larger subtree. Ancestral Search does not say how the search within each subtree (i.e., the
one dominated by s or s′) is carried out. We do not claim that readers always adhere
exactly to Ancestral Search, especially not when they are confronted with unusual
situations (as we shall see in our second experiment). Rather, AS can be seen as an ‘ideal
model’, much like a straight line could be seen as an ideal model of how a pedestrian
walks from one point to another. We shall see later that AS makes surprisingly accurate
predictions in terms of what references are found difficult by readers.

4. Generation algorithms

What kinds of expression would existing GRE algorithms produce in the situations of
interest? Since hierarchies involve relations, the first algorithm that comes to mind is
the one proposed by Dale and Haddock (1991). Essentially, this algorithm combines
one- and two-place predicates, until a combination is found that pins down the target
referent. A standard example involves a domain containing two tables and two bowls,
while only one of the two tables has a bowl on it. In this situation, the combination
{bowl(x), on(x, y), table(y)} identifies x (and y as well), since only one value of x can
verify the three predicates, and this justifies the description ‘the bowl on the table’. Now
consider Figure 2, with one additional library in room 110 of the Watts building. Here

University of Brighton

     room100       ...       room110     ...        room120   room100       ...       room120     ...        room140

Watts building                                                        Cockcroft building

   library                                         

(d)

   library                                         

Figure 2
A university campus with two libraries in different buildings.

the combination {library(x), in(x, y), room(y), roomnumber(y) = 120} identifies x (and
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y too), because no other library is located in a room with room number 120 (and no
other room numbered 120 contains a library). Thus, the standard approach to relational
descriptions allows precisely the kinds of situation that we have described as DE.
Henceforth, we shall describe this as the Minimal Description (MD) approach to ref-
erence because, in the situations of interest, it uses the minimum number of properties
by which the referent can be distinguished.

Another option would be to treat a relation like ‘being in room 120’ as a one-place
property of the library, and to use the Incremental Algorithm (Dale and Reiter 1995) to
generate the descriptions in question. This, however, would not produce results that are
interestingly different from MD. Suppose, for example, that the TYPE Attribute is most
preferred (i.e., considered first by the algorithm), with values such as ‘library’, ‘room’,
and so on. Suppose, furthermore, that the Attribute ROOM NUMBER is preferred over
the Attribute BUILDING NAME and, crucially, that a property such as ‘ROOM NUMBER

= x’ is interpreted as true of all those objects in the university (regardless in which
building) that are located in something whose room number is x. Then the Incremental
Algorithm starts selecting TYPE=library, followed by ROOM NUMBER=120, at which
stage a distinguishing description is reached. In other words, the same description
would be generated by this algorithm as by Dale and Haddock (1991) and, once, again,
the infamous LO and DE would occur. Choosing a preference order in which building
names are preferred over room numbers would produce ‘the library in Cockcroft’.
While this description seems defensible in this case, it is easy to see that this preference
order would produce excessively lengthy descriptions in other situations. No single
preference order produces acceptable results in all cases.

We will now sketch two GRE algorithms, both of which are guaranteed to prevent DE
and LO if Ancestral Search holds. (These algorithms will be investigated empirically in
sections 4 and 5.) They operate by reducing the reader’s search space, including logically
redundant information into the descriptions that they generate. These algorithms, called
Full Inclusion (FI) and Scope-Limited (SL), are not the only ways in which resolution may
be aided, but we will see that they represent two natural options. Both take as input a
hierarchical domain D, a location d where the referring expression will materialise, and
an intended referent r. The output is a list of properties L to be turned into an English
description by a language realisation program.

The first algorithm, FI , represents a straightforward way of reducing the length of
search paths, without particular attention to LO or DE. It lines up properties that
identify the referent uniquely within its parent node, then moves up to identify this
parent node within its parent node, and so on until reaching a subtree that includes
the starting point d.7 FI may be likened to existing treatments of salience. In Krahmer
and Theune’s approach to GRE, for example, distractors that have lower salience than
the intended referent do not have to be removed. We apply this idea to hierarchical
domains using the assumption that from the point d where the utterance was made all
nodes within d’s parent node are as salient as d itself, while more ‘distant’ nodes are
gradually less salient. As in Krahmer and Theune (2002), salience sometimes allows for
shorter descriptions, as when ‘room 110’ replaces ‘room 110 in Watts’ when said in Watts
building (but outside room 110).

7 ‘Includes’ is taken to be reflexive: a includes b iff a is an ancestor of b or a = b.
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Full Inclusion(r):

L := 〈〉 { Initialise L as the empty list }

FI.Identify(r)

The function ‘FI.Identify’ is defined recursively: (For simplicity, L does not contain the
individual referents x1,...,xj , but only their properties.)

FI.Identify(X):

L := L + P , where P identifies X uniquely within Parent(X)

X := Parent(X)

IF X includes d THEN STOP ELSE FI.Identify(X)

Applied to our earlier example of a reference to room 120, FI first builds up
the list L = 〈(type = room, roomnumber = 120)〉, then expands it to L = 〈(type =
room, roomnumber = 120), (buildingname = Cockcroft)〉. Now that Parent(X) in-
cludes d , r has been identified uniquely within D and we reach STOP. L might be
realised as ‘room 120 in Cockcroft’, for example.

FI gives maximal weight to ease of resolution. But something has to give, and that
is brevity: By conveying logically redundant information, descriptions are lengthened,
and this can have drawbacks, most evidently when there are limitations of space or time.
The second algorithm, called SCOPE-LIMITED (SL), constitutes a compromise between
brevity and ease of resolution. SL prevents DE and LO but opts for brevity when DE
and LO do not occur. Put differently, SL favours ease of resolution when there is a risk of
DE or LO, but ease of interpretation when there is no such risk. This is done by making
use of the notion of SCOPE, which was used in the definition of DE and LO. It may
be recalled that a description (x, P ) in which P conveys attributes A1, ..Aj leads to
DE or LO when its hearer comes across a node of the same type as x which is not
a member of SCOPEGROUP(x, {A1, ..Aj}). It follows that when the hearer is searching
within SCOPE(x, {A1, ..Aj}), the description (x, P ), even if minimally distinguishing,
cannot lead to DE or LO. Consequently, (x, P ) can be uttered in any position d within
the subtree denoted by SCOPE(x, {A1, ..Aj}) with no risk of leading to DE or LO
situations. In other words, if SCOPE(x, {A1, ..An}) contains d, and if A1, ..An are the
attributes conveyed in a description (x, P ), then this description does not lead to DE or
LO. This allows SL to use logically redundant properties more sparingly:

Scope-Limited(r):

L := 〈〉 { Initialise L as the empty list }

SL.Identify(r)

SL.Identify(X):

L := L + P , where P identifies X uniquely within Parent(X)

X := Root(Scope(X, {A1, .., Aj})), where A1, .., Aj are the Attributes
associated with P

IF X includes d THEN STOP ELSE SL.Identify(X)

11
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While FI only terminates the generation of the description when a node which includes
d is reached, SL concludes potentially much earlier, when an Attribute (or a combina-
tion of Attributes) is used that is guaranteed to identify all objects of the relevant type
uniquely throughout a tree that includes d. By taking scope into account, SL avoids the
inclusion of any hierarchical levels not strictly required for preventing DE and LO.

Consider a description uttered in the position d = room 100 of Watts, with r = room
140 (in Cockcroft) as the intended referent. Existing GRE approaches such as Dale &
Reiter (1995) would tend to produce a minimally distinguishing description such as
‘room 140’, causing LO. SL, by contrast, would produce the description ‘room 140 in
Cockcroft’ 8, which in this case is the same description produced by FI . The difference
between FI and SL becomes evident when we consider a case in which the minimally
distinguishing description does not lead to DE/LO, that is, when Ancestral Search
predicts that the reader will meet no DE or LO obstacles. For example, let’s return
to the situation depicted in Figure 1, section 2.1, where there is only library in the
whole university. A reference to r = library would be realised by FI as ‘the library in
room 120 in Cockcroft’. By using SL, however, the same description would be realised
simply as ‘the library’, since the SCOPE of the attribute TYPE is the whole domain tree
(more precisely, SCOPE(LIBRARY,ROOM NUMBER)= D) because there is only one entity
of TYPE ’library’ in the domain and hence no other properties are added. Note that the
addition of a second library in the Watts building would reduce SCOPE(r,TYPE) to the
subtree rooted in the ’building’ node (i.e., each library would be defined by the building
to which it belongs). The behaviour of the SL algorithm would change accordingly,
producing ‘the library in Cockcroft’. Similarly, had we instead included the second
library under another room of Cockcroft, the SCOPE would have been reduced even
further, causing SL to describe r as ‘the library in room 120 of Cockcroft’, just like the
FI algorithm.

5. First experiment: measuring reader’s preferences

In this section we start putting the intuition that LO and DE are better avoided to the
test. We report on a small experiment with human subjects, which involved a document
structured in sections and subsections as an example of a hierarchically ordered domain.
We chose this domain because, unlike most other domains, it allows us to show subjects
the domain itself (i.e., a real document), rather than, for example, a pictorial represen-
tation of it. More specifically, we investigated the choice of so-called document-deictic
references, such as ‘the picture in part x of section y’ (Paraboni 2003) to check whether
they avoid potential DE and LO situations by adding logically redundant properties
(favouring ease of resolution) and, conversely, whether they choose shorter descriptions
when there is no such risk (favouring ease of interpretation).

5.1 Experiment design

Subjects: 15 academics with considerable practice in the authoring of papers on com-
putational linguistics.

8 The reason is that Root(Scope(r,ROOM NUMBER)) = Cockcroft, which does not include d, causing the
algorithm to have to Identify the Cockcroft building before the algorithms stops.
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Procedure: A within-subjects design was used. All subjects were shown a printed
document containing 18 incomplete statements. Subjects were asked to put themselves
in the shoes of the author and to choose the description that they found more suitable
for each situation:

“Suppose you and a colleague are currently collaborating on this document.
Fortunately he/she did almost all the work for you, and now all that you have to do is
complete certain parts of the existing text [..]”

Subjects completed the statements by choosing one of two alternatives provided: one
‘minimally distinguishing’ description and the other conveying logical redundancy
(corresponding to the output of the FI or SL algorithms). Both alternatives are un-
ambiguous references to the same object. Figure 3 shows a number of descriptions
of this kind (whose intended referents are elsewhere in the document) and objects
(referred to by descriptions elsewhere). Statement 11 gives a choice between a logically
redundant description as generated by FI or SL ("part C of section 2") and its minimally
distinguishing alternative "part C". Both alternatives are unambiguous because there
is only one part labelled as "C" in the document, but the shorter one may potentially
lead to LO since the current document section does not contain a part labelled as "C".
Similarly, statement 12 gives a choice between a minimally distinguishing description
as generated by MD or SL, and a logically redundant alternative as generated by FI ,
but in this case none of the alternatives can lead to DE or LO because there is only one
"‘table 2"’ in the entire document. The presentational order of alternatives (i.e., short

Figure 3
Fragment of the document used in the experiment.

versus redundant descriptions) was evenly distributed, to control for order effects.

Research questions: We were interested in seeing whether readers prefer longer (i.e.,
logically redundant) descriptions when there is a risk of DE or LO and, conversely,
whether they prefer minimally distinguishing descriptions when there is no such risk.

13
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Table 1
Situations of reference for Experiment 1

Sit. Type Reader Loc. Referent Loc. MD Redundant
2 DE Part A Sec 1 Part B Sec 3 Pic 2 in Part B Pic 2 in Part B Sec 3
9 DE Part C Sec 2 Part B Sec 3 Pic 3 in Part B Pic 3 in Part B Sec 3

13 DE Part B Sec 3 Part A Sec 2 Pic 4 in Part A Pic 4 in Part A Sec 2
15 DE Part B Sec 3 Part A Sec 2 Pic 3 in Part A Pic 3 in Part A Sec 2

5 LO Part B Sec 1 Part A Sec 2 Pic 5 Pic 5 in Part A Sec 2
7 LO Part B Sec 1 Part C Sec 2 Part C Part C Sec 2

11 LO Part A Sec 3 Part C Sec 2 Part C Part C Sec 2
16 LO Part B Sec 3 Part A Sec 2 Pic 6 Pic 6 in Part A Sec 2

4 NONE Part A Sec 1 Part B Sec 3 Table 6 Table 6 in Part B Sec 3
10 NONE Part C Sec 2 Part A Sec 3 Table 5 Table 5 in Part A Sec 3
12 NONE Part A Sec 3 Part B Sec 2 Table 2 Table 2 in Part B Sec 2
18 NONE Part B Sec 3 Part A Sec 1 Table 1 Table 1 in Part A Sec 1

Table 1 shows the type of situation (potential DE, LO, and non-problematic), the
reader and referent location, and the descriptions used. To break the monotony of the
task and to disguise the purpose of the experiment, another six situations were used
that were not relevant to the experiment. Half of the situations, in each of the types,
involved backward references, the other half involved forward references. Pictures were
enumerated per part so that we could compare short and long versions of potentially
problematic descriptions (e.g., ’picture 5’ in which the intended referent is not in the
current document part, which may or may not contain other pictures). Within the LO
situations, two of the four statements involved references to pictures, while the other
two involved references to sections. This was done in order to test whether the type of
the referent had any influence on the choices made by the subjects. All the questions
related to potential DE situations involved references to pictures, because using DE
references to sections would have led to highly artificial structures.

Hypothesis 1.1: In a problematic DE situation, descriptions generated by FI or SL are
preferred over minimally distinguishing (MD) descriptions;

We will use the DE situations in Table 1 to test this hypothesis, investigating how often
subjects prefer FI/SL descriptions to MD ones.

Hypothesis 1.2: In a problematic LO situation, descriptions generated by FI or SL are
preferred over minimally distinguishing (MD) descriptions;

We will use the LO situations in Table 1 to test this hypothesis, investigating how often
subjects prefer FI/SL descriptions to MD ones. Note that in problematic situations, SL
generates the same descriptions as FI .

We also wanted to investigate whether subjects would prefer descriptions generated by
FI or SL in non-problematic situations (i.e., those not involving potential DE or LO).
We did not use pictures as we did in the problematic cases because in these cases both
FI and SL would produce the same descriptions (e.g., ’picture 5’)9. In order to compare

9 In the second experiment reported in Section 5 this was no longer an issue as we focus on ease of
resolution only, i.e., it did not compare FI with SL.
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these algorithms in non-problematic situations we used tables enumerated throughout
the document, in which case descriptions produced by SL are short (e.g., ’table 5’) and
descriptions produced by FI are longer (e.g., ’table 5 in part C of section 2’).

Hypothesis 1.3: In a non-problematic situation (i.e., a situation not involving DE or
LO), SL or MD descriptions are preferred over those generated by FI .

We will use the non-problematic situations in Table 1 to test this hypothesis, investi-
gating how often subjects prefer FI descriptions to MD/SL ones. Note that in these
non-problematic situations, SL generates the same descriptions as MD.

Hypotheses 1.1 and 1.2 investigate whether ease of resolution (as in logically redundant
descriptions generated by FI or SL) is favoured over ease of interpretation (as in
minimally distinguishing descriptions) when the description may lead to DE or LO.
Hypothesis 1.3 investigates whether ease of interpretation (as in MD or SL descrip-
tions) is favoured over ease of resolution (as in descriptions generated by FI) when the
former does not lead to DE or LO situations.

Materials: Dead ends (DE) and Lack of Orientation (LO) can only occur in fairly
complex domains. Instead of trying to find a large number of such documents, we
made use of a specially designed schematic document. The document was presented
in a printed version, (3-pages long), divided into sections (1-3) and subsections (’A’ and
’B’); subsection 2 contained also a subsection labelled ’C’10.

References to pictures can be realised in many different ways. For example, the referent
can be called ‘picture’ or ‘figure’ or just ‘Fig.’; the reference can be constructed from
the bottom up (‘picture 3 in section 4’) or from the top downwards (‘section 4, picture
3’); punctuation varies as well, as does the use of capitals. In our experiments, we have
made one fairly arbitrary choice from among all these possibilities, motivated by the
types of reference that we observed most frequently in an informal study of a collection
of patient information leaflets from the PILs corpus (ABPI 1997): we always used the
word ‘picture’, we constructed the references bottom up (going up one level at a time),
and never used commas or semi-colons. Thus, for example, we asked subject to compare
‘picture 3 in part B of section 3’ with ‘picture 3 in part B’.11 Even though it is possible that
a different realisation choice would produce different experimental outcomes, this does
not seem likely.

Every description d and its referent r were always on different pages. Had d and r
occurred on the same page then physical proximity might have obscured navigational
issues, causing a bias towards the shortest alternative. Reference d and referent r were
always in document parts whose layout properties differed from each other (e.g., not
both in subsections labelled as ’C’ in different sections of the document). Had d and r

10 See Paraboni 2003, appendix 1, for the actual document.
11 To get a feeling for the frequency of the expressions involved, one might enter "picture OR figure OR fig

1..9 in part OR section 1..9" into Google, using Advanced Search. In July 2006, this produced as many as
77, 000 hits, the great majority of which are of the intended kind. (Since Advanced Search disregards
punctuation and capitalisation, this includes a very small percentage of false positives, for example of the
form ‘Figure x. In section y ...’.) The materials of our second experiment (section 5) were essentially the
same as the present ones, except for the use of capitals.
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occurred in document parts with similar layout properties, there might have been a bias
towards the most complete (i.e., the longest) description.

5.2 Results

Hypotheses 1.1 and 1.2 were confirmed; 1.3 was not. In fact, DE was avoided in 100% of
all subjects’ decisions. In situations involving LO, the FI version was chosen on average
in 93% of cases (stdev=15%), which is highly significant (Wilcoxon signed ranks test,
Z = −3.56, p < .0001). In the cases not involving DE or LO, there was no significant
preference for or against logical redundancy (Wilcoxon signed ranks test Z=-.51, p=.61).
The trend is in the predicted direction (mean of 57% for MD descriptions), but the
variation between subjects was very large (stdev=41%).

5.3 Discussion of first experiment

This first experiment supported the hypothesis that subjects prefer references that in-
clude logically redundant information where there is a risk of DE/LO. Arguably, it is
precisely this kind of information that is needed for the construction of NLG algorithms.
Where logically redundant information does not make the referent easier to identify, the
results of the experiment are less clear, with the subjects being divided between logically
minimal and logically redundant descriptions. In other words, while supporting the
informal observations reported in sections 1 and 2, the experiment does not point to a
generic preference of one of the two GRE algorithms presented in section 3.

Evidently, there are many factors that this experiment did not address, such as the ‘dis-
tance’ between objects. For example, if tables are enumerated throughout the document,
is the brief, SL-type description ‘table 5’ easy enough to resolve? It depends: if there
are tables on virtually every page then resolution is easy, because the table numbers
support browsing not unlike page numbers; if tables are sparse, however, then searching
through the entire document may take unacceptably long, and a more redundant, FI-
type description such as ‘table 5 in section 4.3’ is likely to be preferred. The nature
of the domain is bound to matter as well. For example, in a large spatial domain in
which navigation requires physical effort, short, SL-style descriptions are probably
less acceptable than in a situation where the domain can be surveyed at a glance. To
exemplify the first type of situation, let us return briefly to examples (1a)-(1c), assuming
that a city is divided into areas, and an area into streets:

(1a) 968 Lewes Road, Moulsecoomb area (FI-style)
(1b) 968 Lewes Road (SL-style)
(1c) number 968 (MD-style)

If these are uttered somewhere in Brighton but not on Lewes Road then Ancestral Search
predicts that (1c) leads to LO, since the hearer will start looking for a number 968 in
the street where the description is uttered. Consequently, (1c) is infelicitous anywhere
except on Lewes Road. But how about (1a) and (1b)? Both descriptions avoid LO and
DE, since Brighton has only one Lewes Road. Yet if the hearer does not know that Lewes
Road is in Moulsecoomb, then the resolution of (1b) may involve more work than (1a).

This experiment attempted to find out what types of references are favoured by human
judges when their opinion about these references is asked. While this has the advantage
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that subjects were in a position to make trade-offs between the advantages and disad-
vantages of the different expressions (perhaps balancing ease of interpretation with ease
of resolution), the method is limited in other respects. One limitation arises from the fact
that meta-linguistic judgements are sometimes thought to be an unreliable predictor
of people’s linguistic behaviour (e.g., van Deemter 2004). Perhaps more seriously, the
experiment fails to tell us how difficult a given type of reference (for example, one of
the DE type) would actually be for a reader, and whether the difficulty is a matter of
interpretation or resolution. For these reasons, we decided to perform another experi-
ment.

6. Second experiment: measuring search effort

In the previous experiment, we found that human authors often prefer logically redun-
dant references, particularly when DE and LO can arise. In a follow-up experiment,
we investigate the effect of logical redundancy on the performance of readers. We
are primarily interested in understanding the search process, so resolution rather than
interpretation. It will become clear that the new experiment necessitates a more careful
design and a more complex analysis than the previous one.

6.1 Experiment design

Subjects: Forty-two students on a first-year Computing Science course participated in
the experiment as part of a scheduled practical.

Procedure: A within-subjects design was used. All subjects were shown twenty on-line
documents. The order of the documents was randomised per subject, to control for
order effects. The document structure was always visible, and so was the content of
the current document part. A screenshot of an example document providing this level
of information is shown in Figure 4. Each document was initially opened in Part B of
either Section 2 or 3, where a task was given of the form "Let’s talk about [topic]. Please
click on [referring expression]" . For instance "Let’s talk about elephants. Please click on
picture 5 in part A". Subjects could navigate through the document by clicking on the
names of the parts (e.g. Part A as visible under Section 3). As soon as the subject had
correctly clicked on the picture indicated, the next document was presented. Subjects
were reminded throughout the document about the task to be accomplished, and the
location at which the task was given. All navigation actions were recorded. At the start
of the experiment, subjects were instructed to try to accomplish the task with a minimal
number of navigation actions.

Reader’s knowledge: We assume that readers do not have complete knowledge of the
domain. So, they do not know which pictures are present in each part of each section.
If readers had complete knowledge, then a minimal description would suffice: e.g., if
readers knew that there is only one picture 5 in the document, located in part B of Section
3, then the description ’picture 5’ would probably be completely clear. We do, however,
not assume readers to be completely ignorant either. We assume that they have some
knowledge of the domain, particularly of its hierarchical structure. This brings us to the
question of how much knowledge we should assume our readers to have. In practice
(unlike section 2.1, where the reader was pictured as blindfolded until the description
is uttered) readers will always have some knowledge: if in Part B of Section 2, then they
would know (by convention) that there will also be a Section 1, and a Part A in Section
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Figure 4
Fragment of the experiment interface.

2 etc. It is also likely that being in Part B of Section 2 and seeing pictures 1, 2, 3, readers
will infer that sections can have parts, that parts can contain pictures, and that pictures
are numbered (though not necessarily per part). Because of these kinds of consideration,
it seems appropriate to give our readers knowledge about the entire document structure
(the 5 sections and their parts) and the content (i.e., the existing pictures) in the current
document part (but crucially, no knowledge about pictures elsewhere in the document,
which require navigation to be discovered). A navigation structure like the one in Figure
4 provides this knowledge to the readers.

Research Questions: We want to test whether longer descriptions indeed help res-
olution, particularly in so-called problematic situations. Table 2 shows the types of
situation (potential DE, LO, and non-problematic)12, reader and referent location, and
descriptions used.

Hypothesis 2.1: In a problematic (DE/LO) situation, the number of navigation actions
required for a long (FI/SL) description is smaller than that required for a short (MD)
description.

This hypothesis is similar to hypotheses 1.1 and 1.2 of the previous experiment. We
will use the DE and LO situations in Table 2 to test this hypothesis, comparing for each
situation the number of navigation actions of the short, that is, minimally distinguishing

12 In DE situations, there is another picture with the same number as the referent, but not in a part with the
same name as the part in which the referent is. In LO situations, there is no other picture with the same
number as the referent, and the reader location contains pictures. In non-problematic situations, there is
another picture with the same number as the referent, but not in a part with the same name as the part in
which the referent is.
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Table 2
Situations of reference for Experiment 2

Sit. Type Reader Loc. Referent Loc. Short (MD) Long (FI/SL) Long (other)
1 DE Part B Sec 3 Part A Sec 2 Pic 3 in Part A Pic 3 in Part A Sec 2
2 DE Part B Sec 2 Part C Sec 3 Pic 4 in Part C Pic 4 in Part C Sec 3
3 LO Part B Sec 3 Part A Sec 3 Pic 5 Pic 5 in Part A Pic 5 in Part A Sec 3
4 LO Part B Sec 2 Part C Sec 2 Pic 4 Pic 4 in Part C Pic 4 in Part C Sec 2
5 LO Part B Sec 3 Part A Sec 4 Pic 5 Pic 5 in Part A Sec 4 Pic 5 in Part A
6 LO Part B Sec 2 Part C Sec 1 Pic 4 Pic 4 in Part C Sec 1 Pic 4 in Part C
7 NONE Part B Sec 2 Part A Sec 2 Pic 3 in Part A Pic 3 in Part A Sec 2
8 NONE Part B Sec 3 Part C Sec 3 Pic 4 in Part C Pic 4 in Part C Sec 3

(MD) and long (FI/SL) expressions.

In the previous experiment, we had an additional hypothesis about non-problematic
situations, stating that MD descriptions would be preferred to long descriptions in non-
problematic situations. This is not a natural hypothesis in the new experiment, since it
might not happen very often that a shorter description will lead to fewer navigation
actions (pace Cremers 1996). (Note that in the previous experiment we looked at the
combination of interpretation and resolution, while we are now focussing on resolution
only). Instead, we will look at gain: the number of navigation actions required for a short
description minus the number of navigation actions required for a long description.

For situation s, short description sd of s, and long description ld of s, Gain(s, sd, ld) =
the number of navigation actions required in s for description sd minus the number of
navigation actions required in s for description ld.

Hypothesis 2.2: The gain achieved by a long description over an MD description will
be larger in a problematic situation than in a non-problematic situation, i.e., for
problematic situation ps, non-problematic situation nps, MD description md of both ps
and nps, and long description ld of ps and nps: Gain(ps, md, ld) > Gain(nps,md, ld).

We will use the DE and non-problematic situations in Table 2 to test this hypothesis,
comparing the gain of situation 1 with that of situation 7, and the gain of situation 2
with that of situation 8.

Longer descriptions may always lead to fewer navigation actions, and it can be expected
that complete descriptions of the form ‘picture x in Part y of Section z’Ť will outperform
shorter descriptions in any situation. So, from a resolution point of view, an algorithm
that would always give a complete description may produce better results than the
algorithms we proposed (e.g., situations 3 and 4 in Table 2). The aim of our algorithms
is to make the descriptions complete enough to prevent DE and LO in resolution, but
not overly redundant as this may affect interpretation. We would like to show that the
decisions taken by FI and SL are sensible, i.e. that they produce descriptions that are
neither too short nor too long. Therefore:

S1: We want to consider situations in which FI and SL have produced an incomplete
description, and investigate how much gain could have been made by using a complete
description in those cases. We would like this gain to be negligible. We will use
situations 3 and 4 for this, calculating the gain of the long, complete descriptions
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(namely, long (other) in Table 2) over the shorter, incomplete descriptions generated by
our algorithms (long (FI/SL) in Table 2).

S2: We want to consider situations in which FI and SL have produced a complete
description, and investigate how much gain has been made by using this compared to a
less complete description that is still more complete than MD. We would like this gain
to be large. We will use situations 5 and 6 for this, calculating the gain of the long
complete descriptions generated by our algorithms (long (FI/SL) in Table 2) over the
less complete descriptions (long (other)).

Introducing separate hypotheses for cases S1 and S2 poses the problem of defining
when a gain is ’negligible’ and when a gain is ’large’. Instead, we will compare the gain
achieved in S1 with the gain achieved in S2, expecting that the gain in S2 (which we
believe to be large) will be larger than the gain in S1 (which we believe to be negligible).

Hypothesis 2.3: The gain of a complete description over a less complete one will be
larger for situations in which FI and SL generated the complete one, than for
situations in which they generated the less complete one. More formally, for situations
S1 and S2, descriptions cd and ld, with cd a complete description of S1 and S2 that has
been generated by FI and SL for S2, and with ld an incomplete but longer-than-MD
description of S1 and S2 that has been generated by FI and SL for S1:
Gain(S1, ld, cd) < Gain(S2, ld, cd).

Materials: Twenty on-line documents were produced13, with the same document struc-
ture (sections 1 to 5 with parts A to C) and containing 10 pictures. Documents had
a unique background colour, title and pictures appropriate for the title. The number
of pictures in a section or part varied per document. All of this was done to prevent
subjects relying on memory. For instance, if we had used the same document for all
tasks, subjects might have remembered where a particular picture was located. If we had
used documents that looked similar, subjects might have assumed that they were the
same. If we had kept the distribution of images the same, subjects might have learned
that a particular part always contained many pictures.

Controlled experiments have advantages and disadvantages. Instead of using artificial,
hand-crafted materials, we could have used real-world documents, like patient informa-
tion leaflets, in order to make the tasks as realistic as possible. However, it would have
been extremely difficult to find real-world documents that contain the right phenomena
in a well-balanced way. Firstly, real documents might not have the right descriptions
in them, so we would probably have needed to change sentences in the documents by
hand. Secondly, we need a set of documents that are sufficiently similar in structure that
one can make a fair comparison between longer and shorter descriptions. Moreover, the
structure should not allow subjects to learn where in the document pictures are most
likely to be located. Thirdly, semantic information or their background knowledge of
the domain should be irrelevant. (E.g. if we were using a real document on animals,
and subjects read a section on lions, then they might expect a picture of a tiger to be in
a nearby section, and a picture of an elephant to be closer than a picture of a pigeon.)

13 http://www.csd.abdn.ac.uk/ jmasthof/RefStudy/Intro.php
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Table 3
Number of clicks used to complete the tasks.

Short Long (FI/SL) Long (Other)
Sit. Type Mean STDEV Mean STDEV Mean STDEV

1 DE 3.58 2.14 1.10 0.50
2 DE 3.85 3.28 1.30 1.31
3 LO 5.60 4.84 1.93 1.29 1.23 1.27
4 LO 2.50 1.97 1.60 1.28 1.38 2.07
5 LO 8.53 4.15 1.15 0.53 5.65 6.74
6 LO 7.38 5.49 1.25 1.03 4.08 2.35
7 NONE 1.58 0.98 1.63 2.61
8 NONE 1.48 0.96 1.05 0.32

Table 4
Gain as used for Hypothesis 2.2.

Sit. Type Mean STDEV
1 DE 2.48 2.24
7 NONE -0.05 2.77
2 DE 2.55 3.62
8 NONE 0.43 1.04

6.2 Results

Forty subjects completed the experiment. Table 3 shows descriptive statistics for the
number of clicks subjects made to complete each task. To analyse the results with respect
to Hypothesis 2.1, we used a General Linear Model (GLM ) with repeated measures. We
used two repeated factors: Situation (situations 1 to 6) and Description Length (short
and long(FI/SL) ). We found a highly significant effect of Description Length on the
number of clicks used to complete the task (F1,39 = 262.46, p < .001, η2

p = .87). In all
potentially problematic situations the number of clicks is smaller for the long than for
the short description. This confirms Hypothesis 2.1. We also found significant effects
of Situation (F5,35 = 13.11, p < .001, η2

p = .65), and of the interaction between Situation
and Description Length (F5,35 = 18.02, p < .001, η2

p = .72).

Table 4 shows descriptive statistics for the gain as used for Hypothesis 2.2. We again
used a GLM with repeated measures, using two repeated factors: Description Content
(that of situations 1 and 7, and that of situations 2 and 8) and Situation Type (potential
DE and non-problematic).14 We found a highly significant effect of Situation Type on
the gain (F1,39 = 26.62, p < .001, η2

p = .41). In the non-problematic situations the gain is
smaller than in the potential DE situations. This confirms Hypothesis 2.2.

Table 5 shows descriptive statistics for the gain as used for Hypothesis 2.3. We again
used a GLM with repeated measures, using two repeated factors: Description Content
(that of situations 3 and 5, and that of situations 4 and 6) and FI Decision (with 2 levels:
complete and not complete). We found a highly significant effect of FI Decision on
the gain (F1,39 = 24.10, p < .001, η2

p = .38). The gain is smaller for situations where our

14 There were no significant effects of Description Content and of the interaction between Description
Content and Situation Type. From here on, we will focus on effects that were significant.
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Table 5
Gain as used for Hypothesis 2.3.

Sit. FI Decision Mean STDEV
3 NOT COMPLETE 0.70 1.40
5 COMPLETE 4.50 6.67
4 NOT COMPLETE 0.23 2.51
6 COMPLETE 2.83 2.16

algorithm decided to use an incomplete description than in situations where it chose a
complete one. This confirms Hypothesis 2.3.

6.3 Discussion of second experiment

What does the second experiment teach us, over and above what we learnt from the
first one? First of all, the experiment suggests an explanation of why it was that, in
problematic situations, subjects (in the first experiment) preferred redundant descrip-
tions: the new experiment suggests that the reason may lie in the fact that, in the
potentially problematic situations, the addition of structural information reduces the
effort involved in resolution. This is, of course, exactly in line with the way in which DE
and LO were introduced in section 2, and with the assumptions about ease of resolution
that were formulated in Paraboni and Van Deemter (2002) and in the present section 1.

Do our experiments, taken together, tell us how much redundancy is optimal in any
given situation? – In answering this question, let us first realise that pragmatic factors
relating to the utterance situation are likely to affect how much redundancy is needed.
At one end of the spectrum, there may be highly fault-critical settings, where flawless
understanding is essential; at the other end, there may be discourse settings where
accurate understanding is not important, and where the speaker/writer is under time
pressure. Surely, redundant information must be more common in the former than in
the latter. No one algorithm can cater for all types of settings.

On the other hand, our data do suggest quite strongly that, at least in the situation in
which our subjects found themselves, a law of diminishing returns is in operation. To see
this, let us first focus on the two non-problematic situations (Table 2): Averaging numbers
of clicks of all subjects over all relevant situations, short descriptions required a mere
1.53 clicks; by adding redundant information (unlike SL/FI), this number gets reduced
to an average of 1.34 clicks (long(other), in situations 7 and 8). This very slight gain
(0.19 clicks) is not statistically significant (F1,39 = .60, p = .44, η2

p = .02) and is bought
at the price of a description that is one and a half times longer, which makes it likely to
take more time during interpretation. As for the more interesting problematic situations,
perhaps the best comparison is between situations 3 and 4 (where Long(other) exists and
is longer than Long(FI/SL)). Here, short descriptions lead to a pretty dismal average
of 4.05 clicks. If we lengthen the descriptions as prescribed by FI/SL (Long(FI/SL)
then this figure is lowered drastically to what looks like a pretty acceptable 1.77 clicks,
which constitutes a gain of 2.28. By adding even more information (as in Long(other)),
the figure is lowered further, to 1.31 clicks. Although this does represent a gain, it is
not statistically significant (F1,39 = 2.94, p = .095, η2

p = .07), and besides it is so small
(at 0.46 clicks) that it seems likely to be more than offset by the disadvantages for
interpretation that are implied by the increased length of the description. Needless to say,

22



Paraboni, van Deemter and Masthoff Making Referents Easy to Identify

these effects can only become stronger if more complex documents are considered, and
descriptions that are even longer. Really excessive redundancy might have detrimental
effects on resolution as well as interpretation, because it confuses hearers. (A hearer
might wonder, along Gricean lines, "Why are they saying ‘Picture 5 in Part A of Section
3, printed in black and white’. Surely if they have to give so much information, they
cannot simply mean Picture 5?").

Finally, we also explored the searching behaviour of our subjects, focussing on the
twelve documents in which incomplete descriptions were given. Ancestral Search
predicts that subjects will search the current section (where the question is asked)
exhaustively, before moving on to another section. Figure 5 shows subjects’ compliance
with Ancestral Search in their first navigation action. (Eight of the twelve documents
contained a description of the form ’picture 5 in part A’, so for these it suffices to
look at the first navigation action). Four subjects complied perfectly. Half the subjects
complied almost perfectly, deviating in at most 2 of the 12 cases. However, five subjects
deviated almost completely (10 or more times). Closer inspection showed that these
latter subjects seemed to navigate randomly, not following any obvious pattern (e.g.,
top to bottom). It may well be that these subjects did not take the experiment seriously.
Nevertheless, we still have more deviation from Ancestral Search than expected.

There are two possible explanations. First, some subjects may have started using An-
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Figure 5
Compliance with Ancestral Search during first navigation action

cestral Search, and then found that it was not effective when they encountered some
documents in which the referent turned out to be in some far-away section, after which
they changed to a more random strategy. (Recall that our experiment deliberately
included some unreasonably short descriptions.) Our data seem to confirm this. For
instance, subject S11 started in compliance with ancestral Search until encountering a
document asking, in section 2, to find a picture in part C. The subject clicked as many
as 6 times on part C of section 2, before finally finding the referent in section 3. He went
on to deviate four times from Ancestral Search.

A second explanation for deviating from Ancestral Search is the kind of navigation that
we allowed. Subjects could go directly from, say, part C in section 2, to part A in section
3, without an extra navigation step to go into section 3. In fact, it may even be faster
to navigate to another section than within the current one, depending on the position
of the mouse pointer. (This contrasts with the university domain, where one could not
go directly from room 120 in Watts building to room 140 in Cockcroft building without
first having to walk between the buildings.) It should be noted that this problem may
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be more pronounced after the first navigation action has been made. For instance, if one
clicks on part A in section 2 then the mouse pointer is about as close to part C in section 1
as to part C in section 2. To explore this idea, we looked at the four documents in which
a description of the form ’picture 5’ was given. In 83 cases, subjects who complied with
Ancestral Search for the first navigation action needed to perform a second action; in
77% of these cases, they also complied with Ancestral Search in the second action. Now
in as many as 68% of the cases in which they did not comply, they clicked on the closest
link in an adjacent section (e.g. part A of the next section after having first clicked on
part C). This confirms our suspicion that the lack of effort required to deviate may have
been a reason for deviation. With hindsight, we should probably have made the distance
between the relevant sections larger.

7. Conclusion

This paper has discussed generation strategies that facilitate resolution of a referring
expression by adding logically redundant properties. We have shown that this can
be of crucial importance, especially in large domains, where minimally distinguishing
descriptions can sometimes be completely useless (witness, e.g., example (1c), section 1).
Two algorithms for generating logically redundant references along the lines described
in this paper have been implemented. The experiments reported in the previous sections
indicate that these algorithms are fundamentally on the right track.

We recently learned of an interesting series of experiments that investigate the role of
logically redundant properties in referring expressions (Arts 2004). One of the outcomes
of these experiments was that certain types of logically redundant information almost
consistently led to accelerated resolution. This was particularly true for information
concerning the location of an object. For example, a logically minimal description like
‘the white button on the left’ took readers longer to resolve than a redundant one like
‘the white button at the top left’ (our italics). It is interesting to note that these results
were obtained in situations where neither LO nor DE could occur.

This paper has described an alternative to classical algorithms for the Generation of
Referring Expressions GRE. Suppose you are designing an NLG system and want to give
it a GRE component; how do you know whether to use the new algorithm, instead of
one of its predecessors? Redundancy has a role to play in different kinds of situation
(see the opening sections of this paper), but our algorithms focus on a class of cases
that we believe to be particularly widespread, namely where the domain is hierarchical
in the sense of section 2. Since hierarchies involve relations, let us once again compare
the predictions made by our algorithms with those made by Dale and Haddock (1991).
Suppose their description ’the bowl on the table’ was said when there are two tables
and two bowls, while (only) the table furthest away from the hearer has a bowl on it.
FI and SL, by contrast, would generate something redundant like ’the bowl on the far-
away table’. Which of the two descriptions is best?

The answer is that it depends on the situation: when all the relevant facts are available
to the reader without effort (e.g., all the domain objects are visible at a glance) then
Dale and Haddock’s minimal descriptions are fine, but when search is required, the
kind of ‘studied’ redundancy embodied in FI and SL becomes necessary. Consider the
example again. If the tables and bowls are visible at a glance, then resolving the DE-
inducing description ‘the bowl on the table’ is unproblematic, because there is nothing
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here to discover: the crucial part of the domain is directly available, and no search is
needed. Consequently, it is superfluous to say anything about the location of the table.
But suppose we are in a huge room, where it is not obvious for the hearer what is on each
table. In this situation, ’the bowl on the table’ would be a rather unhelpful description,
compared to ’the bowl on the far-away table’ (or ’the bowl on the table in the corner’),
as would be consistent with our algorithms. (The example can be made more dramatic
by hiding the table with the bowl on it in another room.). What this example highlights
is the distinction between the things that speaker and hearer know when a referring
expression is uttered, and the things they can discover. It is in the latter case that search
becomes an issue. We have shown how this idea can be made precise and incorporated
into a GRE algorithm, and we have demonstrated that this can improve the generated
descriptions from the perspective of the hearer.

Recent work in psycholinguistics, focussing on spontaneous speech in dialogue, has
shown that speakers and hearers often act as if they are completely oblivious of the
epistemic limitations of their interlocutors, even when these limitations have been made
perfectly obvious to them (e.g., Keysar et al. 2003). These widely known results have
caused some researchers to expect language users to behave with unbridled descriptive
“egocentricity” in all situations. The first of our two experiments suggests that human
writers (as opposed, perhaps, to speakers) can be highly altruistic in their descriptions
of objects. The second experiment demonstrates how descriptive altruism can benefit
readers.

By exploring the benefits for the hearer (in terms of the effort required for identifying
the referent), we have not only shown that it can be good to add logically redundant
information to a referring expression; we have arguably also shed some light on the
reason why redundant descriptions are sometimes preferred. By counting the number of
clicks that subjects need in order to find the referent, and relating these to predictions
stemming from our Ancestral Search model, we believe that we have achieved a degree
of insight into the ‘resolution’ processes in the head of the reader, not unlike the way in
which insights in human language processing can be produced by eye-tracking experi-
ments. It would be interesting to see whether the ideas discussed here can be confirmed
using such a more entrenched psycholinguistic paradigm.
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