
KEES VAN DEEMTER AND EMIEL KRAHMER

GRAPHS AND BOOLEANS: ON THE GENERATION OF
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1. Introduction

Generation of Referring Expressions (gre) is a key task of Natural
Language Generation nlg systems (e.g., Reiter and Dale, 2000, section
5.4). The task of a gre algorithm is to find combinations of properties
that allow the generator to refer uniquely to an object or set of objects,
called the target of the algorithm. Older gre algorithms tend to be
based on a number of strongly simplifying assumptions. For example,
they assume that the target is always one object (rather than a set),
and they assume that properties can always only be conjoined, never
negated or disjoined. Thus, for example, they could refer to a target
object as “the small violinist”, but not as “the musicians not holding
an instrument”. As a result of such simplifications, many current gre

algorithms are logically incomplete. That is, they sometimes fail to
find an appropriate description where one does exists.1 To remedy
such limitations, various new algorithms have been proposed in recent
years, each of which removes one or more simplifying assumptions.
They extend existing gre algorithms by allowing targets that are sets
(Stone, 2000; van Deemter, 2000), gradable properties (van Deemter,
2000, 2006), salience (Krahmer and Theune, 2002), relations between
objects (Dale & Haddock, 1991; Horacek, 1997), and Boolean properties
(van Deemter, 2001, 2002).

Recently a new formalism, based on labelled directed graphs, was
proposed as a vehicle for expressing and implementing different gre

algorithms (Krahmer et al., 2001, 2003). Although the formalism was
primarily argued to support relatively simple descriptions (not involv-
ing negations or disjunctions, for example), we will show that it can
be used beyond these confines. Far from claiming that this will solve
all the problems in this area, we do believe that a common formalism

1 We use the term ‘description’ to denote either a combination of properties
or its linguistic realization.
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would be extremely useful, as a basis for comparing and combining
existing algorithms. An additional advantage is that the computational
properties of graphs are well understood and efficient algorithms for
manipulating graphs are available ‘off the shelf’ (e.g., Mehlhorn, 1984).

In this paper, we will explore to what extent the graph-based ap-
proach to gre can be extended to express a variety of algorithms in
this area. Our discussion will be limited to semantic aspects of gre

and, more specifically, to the problem of constructing combinations of
properties that identify a referent uniquely (i.e., constructing a dis-
tinguishing description). Our main finding will be that most existing
gre algorithms carry over without difficulty, but one algorithm, which
focusses on the generation of Boolean descriptions that also contain re-
lational properties, does not. For this reason, we propose an alternative
algorithm that produces different types of Boolean descriptions from
the original algorithm, using graphs in a very natural way.

The paper is structured as follows. In section 2 we briefly describe
the basic graph-based gre approach. Then, in section 3, we describe
how various earlier gre algorithms aimed at the generation of sets,
gradable properties, salience and negated properties can be reformu-
lated in terms of the graph approach. In section 4 we describe two
graph-based algorithms for the generation of full Boolean expressions,
one based directly on van Deemter (2001, 2002) and one new alterna-
tive. In the concluding section, we list some of the new questions that
come up when the different types of algorithms discussed in this paper
are combined.

2. Graph-based gre

A number of gre algorithms were proposed in the 1990s, of which
the Incremental Algorithm from Dale and Reiter (1995) is probably
the best known. These ‘basic’ gre algorithms generate distinguishing
descriptions of individual objects. The descriptions generated consist
of conjunctions of atomic properties that are represented in a shared
Knowledge Base (kb) that is formalized as an attribute/alue structure.
Using the attributes Type, Size, and Holds, for example, a very
simple kb may look as follows:

Domain: {s1 , s2 , s3 , s4}
Type: Musician = {s1 , s2}, Technician = {s3}, Trumpet = {s4}
Size: Big = {s1 , s3}, Small = {s2 , s4}
Holds: s4 = {s2}
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Note that the first argument of a relation like Holds is, for now,
treated as another attribute, expressing that the object that holds s4

(a trumpet) is s2 (a musician). In the abbreviated notation used here,
only those attributes are listed that have a nonempty set of values.
Thus, for example, it follows that Holds: s3 = {} (i.e., nobody holds
the technician).

Given this kb, the Incremental Algorithm can describe s1 by con-
joining the properties 〈 Size, Big 〉 and 〈 Type, Musician 〉, for ex-
ample, because the intersection of their extensions equals {s1 , s3} ∩
{s1 , s2} = {s1}. Simplifying considerably, the algorithm proceeds
by incrementally conjoining more and more properties, removing more
and more ‘confusables’ (i.e., objects with which the target object may
be confused). This process continues until only the target itself is left.
The Incremental Algorithm does not allow backtracking, which is what
makes it fast (Dale and Reiter, 1995).

In Krahmer et al. (2001), it was shown that algorithms such as the
Incremental Algorithm can be mirrored in a graph-based formalism, by
expressing the description as well as the kb as a labelled directed graph.
Let D be the domain of discourse, P a set of names for properties, and
R a set of names for relations, then L = P ∪ R is the set of labels.
Formally, G = 〈V G , EG〉 is a labelled directed graph, where V G ⊆ D is
the set of nodes (the potential referents) and EG ⊆ V G×L×V G is the
set of labelled directed edges. The kb above can now be reformulated
as the graph in Figure 56. Properties are modelled as loops, i.e., edges
which start and end in the same node, whereas relations are modelled as
edges between nodes.2 Note that the object of the relation is no longer
hidden within the attribute Holds, allowing, for example, relations to
be used iteratively, as in ‘The man who holds a trumpet owned by a
woman’.

We call the graph S that represents the kb the scene graph; if s ∈ V S

is the target object then s can be singled out as the designated element
of S and we call Σ = 〈s, S〉 the scene pair. Crucially, a description is
represented using a similar pair, consisting of a connected description
graph D and a designated element d ∈ V D ; the pair ∆ = 〈d, D〉 is
called a description pair. Representing both the description and the
scene using graphs allows one to view gre as a graph construction

2 In fact, nothing forbids relations which start and end in the same node
(which is correct, in view of potentially reflexive relations such as ‘shaving’
and ‘washing’). However, for simplicity, we shall assume throughout this paper
that all relations are non-reflexive.
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Figure 56. A scene graph involving four objects

problem. More particularly, the task is to construct a description pair
that ‘refers uniquely’ to a given scene pair.3 The notion ‘refers uniquely’
is defined via the notion of a subgraph isomorphism. A graph S′ is a
subgraph of S if V S ′ ⊆ V S and ES ′ ⊆ ES .

π is a subgraph isomorphism between D and S (Notation: D % πS) iff there
exists a subgraph S′ of S such that π is a bijection π : V D → V S ′ such that
for all nodes v, w ∈ V D and all labels l ∈ L, (v, l, w) ∈ ED ⇔ (π(v), l, π(w)) ∈
ES ′ .

A description pair ∆ = 〈d,D〉 refers to a scene pair Σ = 〈s, S〉 iff D is
connected and ∃π : (D % πS and π(d) = s).

Thus, a description pair ∆ = 〈d, D〉 refers to a scene pair Σ = 〈s, S〉 iff
there exists a subgraph isomorphism between D and S that maps d to s.
Note that, using this terminology, a description pair can ‘refer’ to more
than one scene pair. Consider the description graphs depicted in Figure
57, each of which has s as its designated element. Let Σ = 〈s2 , S〉, that
is, we want to generate an expression referring to s2 in S, where S
is the scene graph depicted in Figure 1. Then the first of the three
corresponding description pairs refers to Σ but not uniquely (it may

3 Equivalently, one could say that the description pair refers to the
designated element given the scene graph.
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Figure 57. Three possible description graphs

also refer to the ‘confusable’ 〈s1 , S〉), while both of the other pairs refer
to Σ uniquely. We define:

Given a graph S and a description pair ∆, the set of confusables, Conf(∆, S),
is the set of those nodes s′ ∈ V S such that ∆ refers to 〈s′, S〉.
A description pair ∆ = 〈d,D〉 refers uniquely to a scene pair Σ = 〈s, S〉 iff
〈d,D〉 refers to 〈s, S〉 and ∀π : (D % πS ⇒ π(d) = s).

Note that if a description pair ∆ = 〈d, D〉 refers uniquely to a scene
pair Σ = 〈s, S〉, then Conf(∆, S) = {s}, i.e., the set of confusables is a
singleton.

We have seen that there are multiple unique (distinguishing) de-
scriptions for our target s2 in S. As usual in gre, certain solutions
may be given preference over others. There are various ways to do this.
One way is by considering properties in some fixed order and to let
the algorithm proceed incrementally by adding suitable properties one
by one, stopping once a uniquely referring description is found (Dale
and Reiter, 1995). A more general way would be to use cost functions
(Krahmer et al. 2001, 2003). Costs are associated with subgraphs D of
the scene graph S (notated cost(D)). We require the cost function to
be monotonic. This implies that extending a graph D with an edge e
can never result in a graph which is cheaper than D. Formally,

∀D ⊆ S ∀e ∈ ES : cost(D) ≤ cost(D + e)

Here we assume that if D = 〈V D , ED〉 is a subgraph of S, the costs
of D can be determined by summing over the costs associated with
the edges of D. For the time being we assume that each edge costs 1
point. Naturally, this is a simplification, which does not do justice to
the potential benefits of cost functions (but see Krahmer et al. (2003)
for discussion). Thus, the first distinguishing graph in Figure 2 costs 2
points and is cheaper than the other one (which costs 3 points).

Figure 2 contains the sketch of a basic graph-based gre algorithm,
called makeReferringExpression. It takes as input a scene pair Σ
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makeReferringExpression(s, S) {
bestGraph := ⊥;
D := 〈{s}, ∅〉;
return findGraph(s, bestGraph, D, S);

}

findGraph(s, bestGraph, D, S) {
if [bestGraph �= ⊥ and cost(bestGraph) ≤ cost(D)]
then return bestGraph;
Conf := {n : n ∈ V S ∧ 〈s, D〉 refers to 〈n, S〉};
if Conf = {s} then return D;
for each adjacent edge e do

I := findGraph(s, bestGraph, D + e, S );
if [bestGraph = ⊥ or cost(I) ≤ cost(bestGraph)]
then bestGraph := I;

rof;
return bestGraph;

Figure 58. Sketch of the main function (makeReferringExpression) and
the subgraph construction function (findGraph)

consisting of the target s in a scene graph S. The description pair ∆ is
initialized with the target s and the initial description graph D whose
only node is s. In addition, a variable bestGraph is introduced, for the
best solution found so far. Since no solutions have been found at this
stage, bestGraph is initialized as the empty graph ⊥. In the findGraph
function the algorithm systematically tries expanding D by adding
adjacent edges (i.e, edges from s, or possibly from any of the other
vertices added to the D under construction). For each D it is checked
what the set of confusables is. A successful description is found iff
Conf = {s}. The first distinguishing description that is found is stored
in bestGraph. At that point the algorithm only looks for description
graphs that are cheaper then the best (i.e., cheapest) solution found so
far, performing a complete, depth-first search. (Naturally, graph-based
generation is compatible with different search strategies as well.) It
follows from the above-mentioned monotonicity requirement that the
algorithm outputs the cheapest distinguishing description graph, if one
exists. Otherwise it returns the empty graph.4

4 This basic algorithm has been implemented in java 2 (J2SE, version 1.4).
For implementation and performance details we refer to Krahmer et al., 2003.

}
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Discussion The graph-based gre approach has a number of attractive
properties. First, there are many efficient algorithms for dealing with
graph structures (see for instance Mehlhorn, 1984, Gibbons 1985, and
Chartrand and Oellermann, 1993). Second, the treatment of relations
between objects is not plagued by some of the problems facing ear-
lier approaches; there is, for instance, no need for making any ad hoc
stipulations (e.g., that a property can only be attributed to a given
object once per description, Dale and Haddock, 1991). This is because
relational properties are handled in the same way as other properties,
namely as edges in a graph. Relational properties cause testing for a
subgraph isomorphism to have exponential complexity (see Garey &
Johnson, 1979, Appendix A 1.4, GT48, on subgraph isomorphisms),
but special cases are known in which the problem has lower complexity
(e.g., when both graphs are planar, that is, drawable without crossing
edges). The availability of results of this kind is an important advan-
tage of using graphs in gre. Many existing gre algorithms can be
reformulated using graphs. In the following section, we will show how
some of these, each of which extends ‘basic’ gre, can be recast in
the graph-based approach. Our exposition of the original algorithms
is necessarily sketchy; for details we refer to the original papers. In
the section thereafter we show in more detail how the graph-based
approach enables two different algorithms for the generation of boolean
expressions.

3. Some simple extensions of graph-based GRE

3.1. Referring to sets

Firstly, we consider extensions of gre algorithms that generate refer-
ences to sets. Suppose, for example, we want to refer to the set {s1 , s2}
in Figure 56 (to say that its elements are famous, for instance). This
type of reference can be achieved by a simple extension of existing
gre algorithms: properties are conjoined as normal, removing from
Conf(∆, S) any objects that lie outside the target set, and the al-
gorithm stops if and when the remainder equals the target set (i.e.,
all other confusables are removed). The target {s1 , s2}, for example,
may be described by the single property Musician (and realized as ‘the
musicians’). We will show that a similar procedure can be followed
using a graph-based approach.
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In fact, the algorithm described in the previous section is almost
ready to generate simple descriptions referring to non-singular objects.
The input of the algorithm is then no longer a single node s ∈ V S , but
a set of nodes W ⊆ V S (in this case W = {s1 , s2}). The algorithm now
tries to generate a description pair ∆ uniquely referring to the scene
pair Σ = 〈W, S〉. This requires a slight update of the definition of what
it means to refer (uniquely): the constructed subgraph should refer (in
the sense defined in section 2) to each of the nodes in the set W , but
not to any of the nodes in the scene graph outside this set. Formally,

∆ = 〈d,D〉 refers to Σ = 〈W,S〉 iff D is connected and for each w ∈ W
∃π(D % πS and π(d) = w).

∆ = 〈d,D〉 uniquely refers to Σ = 〈W,S〉 iff 〈d,D〉 refers to 〈W,S〉 and there
exists no w′ ∈ V S −W such that 〈d,D〉 refers to 〈{w′}, S〉.

Note that this redefines reference as always involving a set as its target;
the singular case is obtained by restricting W to singleton sets. This
does not affect the theoretical complexity of the algorithm, which de-
pends on calculating sets of confusables (i.e., calculating Conf(∆, S),
for different ∆).

As observed in Stone (2000), gre should also allow reference to sets
based on properties that they have as collectives (such as ‘being parallel
to each other’). Solutions to this problem are proposed in Stone (1999)
and van Deemter (2002), the latter of which can be mirrored directly
in terms of graphs if nodes are allowed to represent sets of objects and
edges are allowed to represent properties of collectives.

3.2. Gradable properties

The analysis of vague or gradable properties such as Small that we
have used so far (consistent with Dale and Reiter, 1995) is not really
satisfactory, for example because being small means something else for
a person than for a musical instrument (Figure 56). The analysis is even
more clearly inapplicable to superlatives. ‘The smallest musician’, for
example, does not necessarily denote the object that is both the small-
est object in the domain and a musician. It is better to let the kb list
absolute values, such as a person’s size in centimeters, and let gre de-
cide what counts as small in a given context (van Deemter, 2006). This
approach allows the generator to describe someone as the small(est)
musician, for example, even if the kb contains smaller objects, as long
as these others are not musicians.
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Figure 59. Graph with gradable properties made explicit

Looking at this proposal in a bit more detail, it is worth noting that
it works by adding ‘derived’ properties to the database: properties of
the form Size(x) > value, Size(x) < value, which can be inferred from
absolute ones (Size(x) = value) listed in the database. Note that only a
limited number of inequalities needs to be added, since absolute values
not occurring in the database will not be relevant for derived properties.
These derived properties are then used for removing confusables in the
usual way.

Luckily, this procedure can be mirrored using graphs. The way to
do this is by extending the scene graph by adding the derived inequal-
ities to it as additional edges. Suppose that Size (s1 ) = Size (s3 ) =
185cm, whereas Size (s2 ) = 157cm, and Size (s4 ) = 30cm. Then, after
transformation, the graph looks as in Figure 3.2.

Once this extended graph has been constructed, gre proceeds in
the usual way. We now find that the target object s2 can be referred
to uniquely by the description graph containing only the edges Musi-
cian and Size < 185cm. This graph can then be realized as ‘the small
musician’ or ‘the smallest musician’ (for the details of this realization
procedure we refer to van Deemter, 2006).
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The theoretical complexity of the construction algorithm, as a func-
tion of the numbers of nodes and edges in the revised scene graph, does
not change. In the worst case, however, the number of edges in the scene
graph grows quadratically: if the original graph contains c nodes, each
with a different absolute value, the operation illustrated in Figure 3.2
produces a graph with c(c− 1) additional edges. (Each of the c nodes
has an absolute value and now acquires c− 1 comparative values.)

3.3. Salience

Another recent innovation in gre concerns the treatment of salience.
Earlier algorithms simplified by assuming that all objects in the kb

are equally salient (Reiter and Dale, 2000, section 5.4). Krahmer and
Theune (2002) refined this account by one which allows degrees of
salience in the style of Praguean topic/focus theory or centering. For-
mally, this is done using a salience weight function, which assigns a
number between 0 (non salient) and 10 (maximally salient) to each
object in the domain. All objects in the domain can be referred to,
but the more salient an object is, the further its description can be
reduced. The original algorithm works by adding properties until the
set of confusables contains no object that is at least as salient as the
target object. A faster, and probably slightly more natural version of
the algorithm is obtained if the algorithm starts out by restricting
the domain to the set of those objects that are at least as salient as
the target set, causing only those properties to be added that remove
salient distractors. This idea is easily implemented in the graph-based
approach if we redefine the set of confusables as follows:

Given a scene graph S containing a target object s, and a description pair ∆,
Conf(∆, S) is the set of those nodes in s′ ∈ V S that are at least as salient as
s such that ∆ refers to 〈s′, S〉.

But, in fact, this amounts to treating salience as an in-built gradable
property, which allows us to describe the effect of salience on gre by
a variant of the algorithm for gradable properties. Limiting ourselves
to singular references and assuming that salience is the only gradable
property in the kb, this can be done as follows. First, relevant com-
parative values of Salience are added to the scene graph; this involves
properties of the form Salience(x) > value only, since values of the form
Salience(x) < value are irrelevant in this connection. These salience-
related properties are given preference over all others (in terms of costs
this can be achieved by offering salience properties for free), so that



GENERATING REFERRING EXPRESSIONS 407

the gre algorithm will cause every description to take salience into ac-
count. If the algorithm terminates successfully, the result is the unique
description of an object s by means of a graph that attributes a number
of properties to s, for example Musician and British and Salience > 8.
This is a unique description, therefore it follows that s is the most
salient British musician in the domain. The graph may subsequently be
realized by the expression ‘the British musician’, leaving the property
of maximal salience implicit. In this way, salience is treated as just
another gradable attribute, with the only difference that it is always
selected by the gre algorithm and never linguistically realized.

3.4. Negations

Suppose we wanted to refer to the set T = {s3 , s4} in our basic scene
graph. A simple trick (based on the notion of satellite sets) suffices to
see that this is not possible if only atomic properties are taken into
account. For any set X ⊆ D, let Satellites(X), the ‘satellite set’ of X,
be defined as the intersection of all the extensions of properties of which
X is a subset (cf. van Deemter and Halldorsson, 2001):5

SX = {A : A ∈ IP ∧X ⊆ [[A]]}
Satellites(X) =

⋂
A∈SX

([[A]])

Clearly, if Satellites(X) �= X, then the properties in the kb do not
allow X to be characterized uniquely; even if all the properties of X
are intersected, some confusables are not ruled out. Applying this to
our target T = {s3 , s4}, we observe that ST = ∅ (s3 and s4 share
no properties in the kb). This implies that Satellites(T ) =

⋂ ∅ = D,
(and hence not T ).6 What this shows is that our target T cannot
be characterized by algorithms like the ones discussed in Dale and
Reiter (1995), which rely on using intersections alone. As was argued
in Van Deemter (2001, 2002), this is a serious limitation because a
simple characterization is possible if negations of atomic properties are
allowed. For example, the set of elements in the domain that are not
Musicians will do the trick.

It is worth mentioning that negations are not only useful from a
purely logical point of view. Even where they do not add to the expres-
sive power of the generator (i.e., where they do not make more targets
uniquely distinguishable), describing an object in terms of properties it

5 IP is the set of properties; [[A]] is the extension of A.
6 We assume that every object in the domain of discourse is in

⋂
∅, as is

usual when the domain D is given (but compare e.g., Suppes, 1972).
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Figure 60. The scene graph enriched with negated edges

lacks can be the most efficient way to single it out from the rest: if all
persons except one in a scene hold an instrument, then the odd one out
may be best described as ‘the person not holding an instrument’, even
if she could also have been described in purely positive (but possibly
more complex) ways, for example ‘the tall woman in the front row, with
the pearl necklace’.

Adding negations to graph-based gre is easy and follows a familiar
pattern: we can extend the scene graph with additional edges, making
explicit what was implicit in the original scene graph. For this we use
the standard Closed World Assumption (according to which all atoms



GENERATING REFERRING EXPRESSIONS 409

not listed as true are false). For instance, according to our original scene
in Figure 1, s1 is not a technician and does not hold anything. This can
be made explicit by adding negated edges. Let P = {Technician, . . .}
be the set of names of negated properties and R = {Holds, . . .} the set
of names of negated relations, then Lneg = P ∪R is the set of negated
labels. If S = 〈V S , ES 〉 is the original scene graph, then the new scene
graph with negated edges is S′ = 〈V S , ES

′〉, where

ES
′ = ES ∪

{(v, p, v) : (v, p, v) �∈ ES} ∪
{(v, r, w) : v �= w & (v, r, w) �∈ ES}

with p ∈ P and r ∈ R. Now graph-based gre proceeds as before:
negated edges may be selected if they rule out confusables. Again, the
theoretical complexity of the algorithm is not altered, but the scene
graph may grow drastically. If our initial scene S contains c nodes, and
our initial label set L contains n properties and m relations, then the
scene graph with negated edges S′ will contain c.n + c.(c− 1).m edges.
That is: we get a dense graph in which every possible edge is present
with either a positive or a negative label.

In the above, we have presented a treatment of negation based on
extending the scene graph (i.e., on making a set of implicit properties
explicit). Other treatments are possible, where the scene graph is left
intact, and where the algorithm ‘infers’ a negative property where no
positive property is found. Even though this is more efficient from a
representational point of view, the conceptual difference is small. A
difficult question, regardless of which of these strategies is chosen, is
under which circumstances negations are to be chosen: in terms of the
cost functions of section 2, what should be the cost of adding a negated
property? Instead of discussing this issue, we will be content having
established that negations can be treated in the graph-theoretical ap-
proach and explore the consequences of adding a further complication
to gre, which arises when disjunctions are taken into account as well.
In this way, we will be giving the gre algorithm full Boolean as well
as relational coverage.
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Figure 61. An extended scene graph, involving five objects

4. Boolean Descriptions

To put the graph-based approach to the test, let us now move on
to a more challenging task: references using an arbitrary number of
Boolean operators. To keep the problem manageable, we will limit the
presentation to the case where gradable properties and salience do not
play a role. (See the final section for brief discussion, however.)

For the discussion in this section, it will be convenient to use a slight
extension of our example domain, as depicted in Figure 4. Suppose
that the target for gre is the set T = {s1 , s2 , s3}. Basic gre fails to
find a unique reference to T , since there is no set of properties shared
by all elements in T . If negative properties are taken into account
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(see section 3.4), it turns out that we can characterize this set by
Trumpet∩Synthesiser (i.e., the set of objects that are neither trumpets
nor synthesisers), which would be a strange description of this target
set. This result is due to the fact that basic gre does nothing else than
conjoin atomic properties (i.e., intersect their extensions).7 Recently,
proposals have been made for allowing gre algorithms to use any
combination of Boolean operators (van Deemter, 2001; 2002; Gardent,
2002). Using these, we find a non-atomic (positive) property shared by
all elements of {s1 , s2 , s3} in our basic example scene: they are all either
musicians or technicians ({s1 , s2 , s3} = Technician ∪ Musician).
In section 4.1 we will explore ways in which existing algorithms for
Boolean gre may be reformulated using graphs. This discussion will
lead on to a wholly new algorithm which is more easily cast in a
graph-theoretical mold (section 4.2).

4.1. Applying an Incremental Algorithm to Boolean expansions of
graphs

Van Deemter (2001, 2002) describes an extension of the Incremental
Algorithm, covering equivalents of all Boolean combinations. The basic
idea is to incrementally apply the Incremental Algorithm to Boolean
properties of growing complexity. Thus, we first apply the Incremental
Algorithm to a version of the kb to which negations of properties have
been added. If no unique description is found, the kb is enriched with
binary disjunctions (i.e., disjunctions of two positive or negative prop-
erties), and the Incremental Algorithm is applied to the extended kb.
The process is repeated, with each phase adding longer disjunctions:
ternary and so on.8 In this way, logical equivalents of all Boolean com-
binations are covered, by constructing Conjunctive Normal Forms, that
is, conjunctions of disjunctions of literals. Thus, for example, phase 1
may conjoin the atomic property A with the negation D, after which
phase 2 may add the disjunction G ∪ E (resulting in the description
A ∩ D ∩ (G ∪ E)). Since this process is incremental, no property is
ever removed, so even if G ∪ E = A ∩D, the properties accumulated
during the first two phases are kept, leading to a description that is far
longer than necessary, thus exaggerating a property of Dale and Reiter’s
Incremental Algorithm. (See van Deemter, 2002 for discussion.)

7 Other targets exist, which can not be described uniquely at all using
conjunction and negation alone, e.g., T = {s2 , s3}.

8 Note that we freely mix logical with set-theoretic terminology, the relation
between which is well understood.
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Algorithms of this kind may be mirrored using graphs if we are
able to let these express disjunctive information. Recall that, in section
3.4, negations of atomic properties were added to the scene graph to
allow the inclusion of negative properties into descriptions. We would
now have to do something analogous for disjunctions, and to extend
the scene graph with edges making implicit information explicit. For
example, we would make explicit that s1 , s2 and s3 are all musicians
or technicians, by adding an edge labelled ‘Musician or Technician’
(notation: [Musician | Technician]) to each of them. We could apply
the graph-based gre algorithm in phases, and for each new phase
extend the scene graph. A given phase may either result in a uniquely
referring description (i.e., the algorithm terminates successfully), or
not, in which case the next phase is entered. If the last phase terminates
unsuccessfully then no uniquely referring description is found. Thus:

phase 1 Apply graph-based gre algorithm makeReferringExpres-
sion to the scene graph, after addition of negative edges.

phase 2 Add edges labelled with binary disjunctions to the scene graph,
then apply the algorithm to the resulting graph.

phase 3 Add edges labelled with ternary disjunctions. Etcetera.

In each phase, the basic graph-based makeReferringExpression from
Figure 2 is used. Note that if our target is the set {s1 , s2 , s3}, a simple
solution, involving only one property, is found in phase 2, selecting the
edge labelled [Musician | Technician], which may be realized as ‘the
musicians and the technician’. (Note the reversal, by which ‘and’ ex-
presses disjunction.) The algorithm can be flavoured in different ways;
for example, one might decide to do a complete search within each phase
(in the style of section 2), but to never undo the results of previous
phases. Or alternatively, one could use heuristic search within each
phase, and try to find the ‘cheapest’ solution given these limitations.

But is our premise correct? That is, can disjunctive information
always be expressed by labelled directed graphs of the kind that we
have been discussing? Let us see how this could work, focussing on the
case of binary disjunctions, and focussing on first principles rather than
representational economy, for clarity. As was the case for negations, first
we have to define a new class of labels, Ldis2 . Naturally, the new labels
will be composites of existing labels, for example [l | l′] (also written as
l | l′) will be the label denoting the disjunction of the literals denoted
by the labels l and l′:
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Ldis2 = Lneg ∪ {[l | l′] : l, l′ ∈ Lneg},

where l and l′ are of the same arity (i.e., both are properties or both
are relations). This would make [ Musician | Technician ] a label, and
also [ Hold | Operate ], for example. With the newly extended set of
labels in place, let us see how the scene graph may be extended. If
S = 〈V S , ES 〉 is a scene graph (possibly containing negative as well
as positive edges), then the new scene graph with disjunctive edges is
S′ = 〈V S , ES

′〉, where (for [l | l′] ∈ Ldis2 ) the following holds:

ES
′ = ES ∪

{(v, [l | l′], v) : (v, l, v) ∈ ES ∨ (v, l′, v) ∈ ES} ∪
{(v, [l | l′], w) : (v, l, w) ∈ ES ∨ (v, l′, w) ∈ ES}

So far, everything appears to be as it should. Unfortunately, however,
this treatment leaves some types of disjunctions uncovered. The sim-
plest problem is posed by mixtures between properties and relations,
such as ‘is a technician or holds a trumpet’. Cases like this might be
accommodated by creating ‘mixed’ labels, which disjoin a property
and a relation (that is, by dropping the requirement, in the definition
of Ldis2 , that disjoined labels must have the same arity). An example
would be the label [ Technician | Hold ], which could now label both
looping and non-looping edges. Though this pairing of labels of different
arity is slightly counterintuitive, there is no technical obstacle against
it.

There is a more difficult problem, however, which resists this type
of fix. Consider our running example, depicted in Fig. 6. It ought to
be possible to describe the target {s2 , s3} by means of the disjunctive
relation ‘holds a trumpet or operates a synthesiser’. Disjunctions of
such a complex kind, where the things that are disjoined are essentially
structured rather than atomic, are not covered by disjunctive labels.
(Note that the structure of the disjuncts can be arbitrarily complex,
e.g., ‘hold a violin which is old’, ‘hold a trumpet owned by a woman who
...’.) Extensions of the framework are possible; for example, one might
create a new set of relational labels including, for example, Hold-Violin
(‘holding a violin’), Hold-Violin-Old (‘holding a violin that is old’),
and so on. This extension would allow us to form the disjunctive label
[ Hold-Trumpet | Operate-Synthesiser], giving rise to a distinguishing
description of the target {s2 , s3}. It is doubtful, however, that all pos-
sible cases could be tackled in this fashion, and the approach would
seem to be misguided for various reasons.
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Firstly, it would be fiendishly complicated to add all the right exten-
sions to the scene graph without getting into an infinite loop. Secondly,
by condensing all information into a single label, this approach would
make superfluous the idea of letting the subgraph isomorphism algo-
rithm find matches between complex graphs, going against the grain of
Krahmer et al. (2003). In addition, it would tend to destroy everything
that is simple and intuitive about graphs as representations of meaning,
calling to mind efforts to make Venn diagrams more expressive by
letting lines indicate that a given object can live in either of a number
of different regions of the diagram; such a strategy allows succinct
expression of some disjunctions, but becomes extremely cumbersome
in other cases (Peirce 1896, Shin, 1994).

At least two types of responses are possible to this problem: one
is to represent only some disjunctions explicitly (or even none at all),
and to let the algorithm infer the others, analogous to what was sug-
gested concerning negations at the end of section 3.4. The other is to
explore a different type of algorithm which does not hinge on conjoining
disjunctive properties, but on disjoining conjunctive properties.

4.2. Generating partitions: an alternative algorithm for the
generation of Boolean descriptions

In the present section we offer an alternative algorithm for the gen-
eration of Boolean descriptions. Unlike the previous algorithm, this
algorithm will not be based on an extension of the scene graph which,
as have have seen, leads to problems. In fact, the algorithm leaves the
original graphs intact, embedding the basic algorithm makeRefer-
ringExpression (from Figure 2) in a larger algorithm. Also unlike the
previous algorithm, which generates conjunctive normal forms (CNF
i.e., conjunctions of disjunctions of literals), the new algorithm gener-
ates disjunctive normal forms (DNF). More specifically, the algorithm
generates disjunctions of conjunctions of literals under the added con-
straint that all conjunctions are mutually disjoint. In other words, the
new algorithm uses partitionings. Whether DNFs (including partition-
ings) or CNFs are more useful as an output of gre is a question that
we will not resolve here, but which will be briefly taken up in section
4.3, where optimisation strategies are discussed.

The logical point to observe, in connection with the new algorithm, is
that every Boolean combination is logically equivalent to a partitioning.
This can be seen as follows. Firstly, every Boolean combination is equiv-
alent to a formula in DNF, that is, a formula of the form X1 ∪ ...∪Xn
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describePartition (W, S) {
n := |W |;
k := 1;
D := ⊥;

for k = 1 to k = n do
k-part := {ω : ω is a k-partition of W};
for each ω ∈ k-part do

for each part w ∈ ω do
D′ := makeReferringExpression (w, S);
if D′ �= ⊥ then D := D ∪D′

else failure /* try next ω */
rof;
return D; /* one k-partition could be described */

rof;
return failure;

rof;
}

Figure 62. Sketch of an algorithm describing partitions

where each X i (with 1 ≤ i ≤ n) is of the form Y 1 ∩ ...∩Y m , and where
each Y j (with 1 ≤ j ≤ m) is a positive or negative literal. Secondly,
any DNF formula can be rewritten as a partition, that is, a DNF whose
disjuncts are all disjoint. The rewriting process is most easily demon-
strated using an example. Consider the DNF A∪B∪C (a disjunction of
length three), and suppose this is not a partition, for example because
A∩B, A∩C and B∩C are all nonempty. This DNF can be rewritten as
another disjunction of length 3, namely A∪(B−A)∪(C−(A∪B)): each
disjunct is adapted to make sure that all elements of its predecessors are
removed. This procedure generalises without difficulty to disjunctions
of length n.

We take these logical considerations to imply that, as a first step, it
is sufficient to build an algorithm that generates partition-type descrip-
tions wherever a distinguishing description is possible. The algorithm
works as follows. Let W = {w1 , . . . , wn} be the target, with W ⊆ V S .
We call a partitioning of W into k subsets (henceforth called parts) a
k-partitioning. Figure 4.2 contains a description of the partition-based
generation algorithm, using the function makeReferringExpression
from Figure 2. (In Figure 4.2, the notation D ∪ D′ designates the
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unconnected graph that forms the union of the two connected graphs
D and D′.) In a first iteration, the algorithm tries to describe W itself
(as a 1-partitioning). If this fails, it attempts to describe one of the
2-partitionings of W . That is: for each 2-partition, we call the usual
makeReferringExpression function from Figure 2 and apply it to
each of its parts. As soon as one part cannot be described in the usual
way, we move on to the next 2-partition. For our example target set,
there are 3 partitions in 2 parts: {s1}, {s2 , s3} and {s2}, {s1 , s3} and
{s3}, {s1 , s2}. Both parts of the latter 2-partition can be described in
the usual way, as ‘the technician’ and ‘the musicians’ respectively. So,
here the algorithm would terminate. In general, the partition algorithm
will continue looking at k-partitions for ever larger values of k, until the
target set is split up into singleton parts (i.e., until k = n, the number
of parts equals the number of elements of the target set). Obviously,
there is only one way to partition a target set W in singleton parts.

Note that this new algorithm, which covers Boolean combinations of
properties and relations (“the bold technicians and the musicians who
hold a trumpet”) stays extremely close to the original graph-based
algorithm outlined in section 2 and, unlike the approach outlined in
the previous section, it does not require iterative extensions of the
scene graph adding edges for ever more complex disjunctive labels.
In addition, the approach is compatible with the treatment of gradable
properties and salience. The algorithm, however, is computationally
expensive in the worst case. The reason for this is that the number of
partitions grows exponentially as a function of the size of the target
set. In general, the number of k-partitionings of a target set with c ele-
ments can be determined using the second-order Stirling number S(c, k)
(Stirling 1730, see also e.g., Knuth, 1997:65). This number equals

S(c, k) =

∑ k
j=0

(
k
j

)
(−1)j (k − j)c

k!
Fortunately, there are various ways to speed up the algorithm. For
example, one can use the notion of satellite sets, described in section 3.4
(which can be computed in linear time) to determine whether a purely
conjunctive description for a given part exists; if not, the algorithm
moves on to the next partitioning and tests whether a description for
each of its parts exists. Alternatively, we could limit the set of partitions
by relying on linguistic regularities. For example, by requiring that
the properties corresponding with the different parts are of the same
‘type’. Thus, for example, one might disallow “the musicians and the
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small things”, while allowing “the musicians and the technician” or “the
trumpet and the synthesizer”. Such a move, however, can sometimes
result in a loss if descriptive power, because some sets may no longer
be describable by the algorithm. In other words, the algorithm is no
longer logically complete.

4.3. Generate and Optimise

We have simplified our discussion considerably by focussing on logical
completeness only, that is, on the ability of a gre algorithm to find
a destinguishing description whenever there exists one. This means
that we have largely disregarded the fact (noted in van Deemter, 2002
and more extensively in Gardent, 2002) that some algorithms deliver
descriptions that are very lengthy and unnatural. In fact, it has been
proven to be possible to construct a logically complete Boolean gre al-
gorithm in linear time, as long as the linguistic quality of descriptions is
disregarded (van Deemter and Halldórsson, 2001): only when linguistic
restrictions are placed on the output do things get complicated. It is
well known, for instance, that finding minimal descriptions (e.g., Dale,
1992, Gardent, 2002) is computationally intractable, even when only
conjunction is taken into account (Dale and Reiter 1995). The Boolean
algorithms presented above do not guarantee minimal output, but the
results are generally much shorter and easier to realize than those in
van Deemter and Halldórsson (2001). The quality of the generated
descriptions is ultimately an empirical issue which we cannot hope to
address adequately within the confines of this paper. One point that
we would like to stress here, however, is that Boolean descriptions can
often be optimised automatically.

Consider the second, partition-based algorithm. Suppose the domain
D is the set {d1 , d2 , d3 , d4}, while the target T is {d1 , d2 , d3}. Sup-
pose Musician and Technician are the only properties, with Musician
= {d1 , d2} and Technician = {d2 , d3}. Then the algorithm based on
partitionings behaves as follows: during the first phase there is only
one partitioning (namely T itself), and it cannot be described. During
the second phase, where 2-partitionings are considered, the partitioning
{{d1 , d2}, {d3}} may be chosen, whose two elements may be charac-
terized as follows: the set {d1 , d2} equals the extension of the property
Musician; the set {d3} equals the intersection of the extensions of Tech-
nician and Musician: “the musicians and the technician that is not a
musician”. This would be overly verbose, since Musician ∪ (Technician
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∩Musician) is logically equivalent with the simpler expression Musician
∪ Technician: “the musicians and the technician”.

This illustrates that algorithms for Boolean gre can be viewed as
combining two different tasks: The first is to find a Boolean description
that characterises the target, the second to determine whether there
exists a logically equivalent characterisation that is more natural (e.g.,
briefer). Note that this makes the Boolean algorithms different from all
the other ones discussed in this paper, where the second task was not
relevant, but only another, similar task: determining whether there ex-
ist non-equivalent descriptions that nevertheless (i.e., given the domain
and the extensions of properties) characterise the same target. In our
original example domain, for instance, the property of being a small
musician happens to be co-extensive with holding a trumpet, but this
is something that can only be found out through an inspection of the
domain. By contrast, inspection of the domain is not the natural way
to find out that, for example, Musician ∪ (Technician ∩ Musician) is
equivalent with Musician ∪ Technician. This separation into two differ-
ent aspects of Boolean gre suggests a ‘generate then optimise’ strategy
reminiscent of the idea in Reiter (1990) in the context of simple gre,
which amounted to checking whether any set of properties, in a given
description, may be replaced by another property without affecting the
extension. In the current setting, where logical equivalence (not co-
extensionality) is the issue, an obvious way to optimise is to use the
type of algorithms that are used in chips design to simplify switching
networks (van Deemter, 2002). The best known of these algorithms is
the Quine-McCluskey algorithm, which performs the types of simpli-
fications discussed here without difficulty (McCluskey, 1965).9 A full
discussion of the limitations of logical optimisation will not be offered
here, since it is a more general issue of no particular relevance to the
graph-theoretic approach.

5. Discussion

We have shown how labelled directed graphs can be used for generating
many types of referring expressions, but we have also run into the limits
of their usefulness. Starting from the basic graph-based algorithm of

9 Although Boolean simplification is hard in general, algorithms like
Quine-McCluskey are highly optimised and take little time in most cases
that are likely to occur. Check http://logik.phl.univie.ac.at/chris/
qmo-uk.html.
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Krahmer et al. (2003), we have shown (1) how this algorithm can
be used to generate descriptions of targets that are sets, (2) how it
can accommodate gradable properties, including the property of being
salient, and (3) how it can be extended to deal with negative literals.
Our strategy has been the same in each of these cases: making infor-
mation that is implicit in the original scene graph explicit by adding
additional edges. After these relatively modest extensions, we have
focussed on the generation of Boolean descriptions, arguably one of
the most difficult gre tasks. We have explored how the incremental
Boolean algorithm of van Deemter (2002) might be recast in graphs,
making implicit (disjunctive) information explicit by adding edges to
the scene graph. Having seen that it is difficult to use this method for
representing all the different types of disjunctions when relations are
also taken into account (as in “the men who are either holding a trum-
pet or playing a synthesiser”), we were forced to consider alternative
algorithms, and this has led to a simple alternative based on parti-
tionings of the target set. This approach, which generates a different
type of description from the incremental Boolean algorithm, outputs
description graphs that appear to be natural and easy to realise in
most cases. Having noted that, like its predecessors, the algorithm can
sometimes generate unnecessarily lengthy descriptions, we have briefly
explored the use of existing algorithms for the automatic simplification
of Boolean expressions. We foresee that other problems with complex
referring expressions, not dissimilar to the one arising when disjunctions
and relations are combined (see section 4.1), may arise in other types
of referring expressions (for example when booleans and quantifiers are
combined), but an assessment of the challenges posed by these other
expressions will have to await another occasion.

With the prospect of integrating the different gre algorithms, plenty
of new problems appear on the horizon. For example:

− Relational and Boolean properties. It is unclear how the gen-
erator should choose between different kinds of syntactic/ semantic
complexity. Consider, for example, the addition of a negation, a
disjunction, or a relation with another object. It is unknown, for
example, which of the following descriptions should be preferred
by the algorithm: “the musicians that are not technicians”, “the
violinists and the cellists”, or “the musicians in the string section”.
New empirical research is needed to settle such questions. It is
likely that the choice between different sets of properties can partly
depend on ease of realization: “the string section”, for example,



420 VAN DEEMTER AND KRAHMER

may be preferable to the “the violinists and the cellists” because
it uses fewer words (rather than fewer concepts).

− Salience and sets. Suppose a quintet of musicians is perform-
ing on stage, thereby achieving a higher salience than all other
people. Then two of them start to solo, thereby becoming even
more salient. If existing accounts of salience are applied to sets,
the generator can use the expression “the musicians” to describe
the set of five or the set of two, which introduces an element of
ambiguity into gre that had always been kept out carefully.

− Salience and vagueness. We have shown that salience can be
treated as (almost) ‘just another’ gradable property (section 3.3).
But this is not only good news. Should, for example, “the big piano
player” mean “the biggest of the piano players that are sufficiently
salient”? Or “the most salient of the piano players that are suffi-
ciently big”? Or is some sophisticated trade-off between size and
salience implied? Expressions that combine gradable properties
tend to be highly indeterminate in meaning. Determining under
what circumstances such combinations are nevertheless acceptable
is one of the many new challenges facing gre.

Issues of this kind are to be addressed in our future research.
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